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Preface

These notes were developed in order to supplement the lectures for the ME 4811, a course on
state space analysis and design of control systems. The contents reflect the influence from
other prerequisite courses as well electives in the Dynamics and Control Group of the ME
Department. The material of the course is tailored around one academic quarter (11 weeks)
with 5 contact hours (4 for lectures and 1 for examples) per week.
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1 INTRODUCTION

Unlike “classical control” theory (ME 3801) which is based on Laplace transform repre-
sentations, “modern control” deals directly with systems described in ordinary differential
equation form. We assume that given a physical system, we have already developed our
equations of motion, in other words the modeling part is complete. The goal here is to affect
the dynamic response of the system such that it performs a specific task in a satisfactory
way. The first thing we have to do is to rewrite our differential equations of motion in their
state space form.

1.1 State Variable System Description

The state is a set of quantities such that given initial conditions x(t0) and all future inputs
u(t), all future response x(t) for t > t0 is uniquely determined. If not enough initial conditions
are specified, then more than one responses may be obtained; if too many initial conditions
are specified, then a solution may not be possible. Therefore, we can see that for any
dynamical system the number of states is unique; the choice, however, is not.

The state equations are a coupled set of first–order linear differential equations in the
state variables; i.e.,

ẋ = Ax + Bu ,

where

x : state vector, n× 1 ,

A : open–loop dynamics matrix, n× n ,

u : control vector, m× 1 ,

B : control distribution matrix, n×m ,

along with the output equation
y = Cx ,

where

y : output vector, r × 1 ,

C : sensor calibration matrix, r × n .

Physically, for mechanical systems, x represents the collection of positions and velocities of
the body (so for a complete description this must be twice the number of degrees of freedom),
u is the various actuators (such as thrusters, rudders, propulsors), and y the outputs (what
is available to us through observation or measurements).

As an example, consider the spring–mass–damper system shown in Figure 1. The equa-
tions of motion are

maẍa + kaxa + caẋa + c1(ẋa − ẋb) = f(t) ,

mbẍb + kbxb + cbẋb + c1(ẋb − ẋa) = 0 .
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Figure 1: A spring–mass–damper system

If we take as states the position and velocity of each mass

x1 = xa ,

x2 = ẋa ,

x3 = xb ,

x4 = ẋb ,

we have the equations in state form as

ẋ1 = x2 ,

ẋ2 = − ka

ma

x1 − ca + c1

ma

x2 +
c1

ma

x4 +
1

ma

f ,

ẋ3 = x4 ,

ẋ4 = − kb

mb

x3 − cb + c1

mb

x4 +
c1

mb

x2 ,

and the A, B matrices are

A =



0 1 0 0

− ka

ma
−ca + c1

ma
0

c1

ma

0 0 0 1

0
c1

mb
− kb

mb
−cb + c1

mb

 ,

and

B =


0
1

ma

0
0

 .

It should be emphasized that here we treat the external force f as our control input, this
is of course legitimate if we can and are willing to change f at will so that we can affect
the response of the system. This is not always the case of course; there are external forces
that affect a given system and they act despite our will or even knowledge. These are called
disturbances, and a more general form of the state equations is

ẋ = Ax + Bu + Γw ,
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where

w : disturbance vector, d× 1 ,

Γ : disturbance distribution matrix, n× d .

The above equations are linear; many dynamical systems, however, yield nonlinear equa-
tions of motion. The control design problem is significantly simplified when dealing with
linear equations and in such a case we need to linearize the original nonlinear equations
about a nominal operating point. This nominal point is physically defined usually by the
designer and, roughly speaking, should be the condition where the system is expected to
spend most of its life at. Usually, this is some sort of static equilibrium of the system which
corresponds to a specified value for the control effort.

To formalize things say we have a nonlinear system of state equations

ẋ = f(x, u) .

Fix the control vector u = u0, then

ẋ = f(x, u0) .

Solve the nonlinear coupled algebraic set of equations

f(x, u0) = 0 ,

to get the solution x = x0. This is our nominal point, and solution of this set of equations is
the most difficult part of the linearization process. Once x0 has been obtained, we linearize
ẋ = f(x, u) around the nominal point (x, u) = (x0, u0). To do this we expand in Taylor
series and keep the first order terms only,

f(x, u) =
∂f

∂x

∣∣∣∣∣
(x0,u0)

(x− x0) +
∂f

∂u

∣∣∣∣∣
(x0,u0)

(u− u0) .

Then by assuming the change in coordinates

x → x− x0 ,

u → u− u0 ,

the linearized system becomes
ẋ = Ax + Bu ,

where A and B are the constant Jacobian matrices of partial derivatives evaluated at the
nominal point (x0, u0)

A =
∂f

∂x

∣∣∣∣∣
(x0,u0)

,

B =
∂f

∂u

∣∣∣∣∣
(x0,u0)

.
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Figure 2: A simple pendulum

The elements of A are given by

A = [aij ] , where aij =
∂fi

∂xj

,

and similarly for B.

As an example, consider the simple pendulum shown in Figure 2. The equation of motion
is

m�2θ̈ + mg� sin θ = T ,

or

θ̈ + ω2
n sin θ =

T

m�2
, ω2

n =
g

�
.

Select as state variables

x1 = ωnθ ,

x2 = θ̇ .

The state equations are then

ẋ1 = ωnx2 ,

ẋ2 = −ω2
n sin

(
x1

ωn

)
+

T

m�2
.

For equilibrium (with no excitation, T = 0)

sin
x1

ωn
= 0 ⇒ (x1)0 = 0 or (x1)0 = πωn ,

ωnx2 = 0 ⇒ (x2)0 = 0 .

If we choose the down position to linearize we get

sin
x1

ωn

=
x1

ωn

and the linearized equations are

ẋ1 = ωnx2 ,

ẋ2 = −ωnx1 +
T

m�2
,
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Figure 3: Variables definition for the submarine example

or [
ẋ1

ẋ2

]
=

[
0 ωn

−ωn 0

]
︸ ︷︷ ︸

A

[
x1

x2

]
︸ ︷︷ ︸

x

+

 0
1

m�2


︸ ︷︷ ︸

B

T︸︷︷︸
u

.

Example: Consider the following equations of motion for a submarine in the dive plane
(refer to Figure 3)

(m− Zẇ)ẇ − (Zq̇ + mxG)q̇ = ZwUw + (Zq + m)Uq + mzGq2

+(W − B) cos θ + ZδU
2δ ,

(Iy −Mq̇)q̇ − (Mẇ + mxG)ẇ = MwUw + (Mq −mxG)Uq

−(xGW − xBB) cos θ − (zGW − zBB) sin θ −mzGwq + MδU
2δ ,

θ̇ = q ,

ż = −U sin θ + w cos θ ,

where

U = forward speed ,

w = heave velocity ,

q = pitch rate ,

θ = pitch angle ,

δ = dive plane angle ,

z = depth ,

W = weight ,

B = buoyancy ,

m = mass ,

10



Iy = mass moment of inertia ,

(xG, zG) = coordinates of center of gravity ,

(xB, zB) = coordinates of center of buoyancy ,

Zw = heave force hydrodynamic coefficient ,

Mq = pitch moment hydrodynamic coefficient .

Now say we want to linearize these equations for a level flight path when the dive plane angle
is zero, δ0 = 0. Then by setting all time derivatives to zero (this corresponds to equilibrium)
we get

ZwUw0 + (W − B) cos θ0 = 0 ,

MwUw0 − (xGW − xBB) cos θ0 − (zGW − zBB) sin θ0 = 0 ,

q0 = 0 ,

−U sin θ0 + w0 cos θ0 = 0 .

If we assume that the boat is neutrally buoyant xG = xB and W = B, we have

ZwUw0 = 0 ,

MwUw0 − (zG − zB)B sin θ0 = 0 ,

−U sin θ0 + w0 cos θ0 = 0 ,

from which we can get the nominal position

w0 = q0 = 0 , and sin θ0 = 0 ,

which means
θ0 = 0 , or θ0 = π .

These correspond to the two possible static equilibrium positions, like a regular or like an
inverted pendulum.

If we choose to linearize around the θ0 = 0 equilibrium we have

q2 = (2q0)q = 0 ,

wq = (w0)q + (q0)w = 0 ,

sin θ = (cos θ0)θ = θ ,

w cos θ = (−w0 sin θ0)θ + (cos θ0)w = w .

The linear equations of motion are then written as

(m− Zẇ)ẇ − (Zq̇ + mxG)q̇ = ZwUw + (Zq + m)Uq + ZδU
2δ ,

(Iy −Mq̇)q̇ − (Mẇ + mxG)ẇ = MwUw + (Mq −mxG)Uq − (zG − zB)Wθ + MδU
2δ ,

θ̇ = q ,

ż = −Uθ + w .
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Figure 4: State equations from block diagram

In state space form these are written as
θ̇
ẇ
q̇
ż


︸ ︷︷ ︸

ẋ

=


0 0 1 0

a13zGB a11U a12U 0
a23zGB a21U a22U 0
−U 1 0 0


︸ ︷︷ ︸

A


θ
w
q
z


︸ ︷︷ ︸

x

+


0

b1U
2

b2U
2

0


︸ ︷︷ ︸

B

δ︸︷︷︸
u

,

where the coefficients aij, bi are given by

Dv = (m− Zẇ)(Iy −Mq̇)− (mxG + Zq̇)(mxG + Mẇ) ,

a11Dv = (Iy −Mq̇)Zw + (mxG + Zq̇)Mw ,

a12Dv = (Iy −Mq̇)(m + Zq) + (mxG + Zq̇)(Mq −mxG) ,

a13Dv = −(mxG + Zq̇)W ,

b1Dv = (Iy −Mq̇)Zδ + (mxG + Zq̇)Mδ ,

a21Dv = (m− Zẇ)Mw + (mxG + Mẇ)Zw ,

a22Dv = (m− Zẇ)(Mq −mxG) + (mxG + Mẇ)(m + Zq) ,

a23Dv = −(m− Zẇ)W ,

b2Dv = (m− Zẇ)Mδ + (mxG + Mẇ)Zδ ,

and zGB = zG − zB is the metacentric height. We will use the above equations of motion
as our main example case in these notes. It should be noted that the equations correspond
to Swimmer Delivery Vehicle 17.5 feet in length. This is not needed in the calculations that
follow but it gives an idea of the sizes involved. One thing we have to emphasize is that in
the submarine examples in these notes U is the forward speed (not control). The control is
designated by δ; this is standard notation (see ME 4823 for more details).

1.2 From Block Diagrams to State Equations

The transition between block diagram form (what we were using in ME 3801) and state
equations (what we are using in ME 4811) is relatively simple and can be divided into a
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series of different cases.

1. State equations from block diagram

Suppose we have the block diagram shown in Figure 4, and we want to write a set of state
equations for this system. We observe that the system is third order (it has three integrators,
so its characteristic equation will be third order). Therefore, we need three state equations
and three states. One choice is to take as states the outputs of the integrator blocks. This
way we get

ẋ1 = x2 ,

ẋ2 = x3 ,

ẋ3 = −6x1 − 11x2 − 6x3 + 6u ,

and the output equation
y = x1 .

The A, B, and C matrices are

A =

 0 1 0
0 0 1
−6 −11 −6

 , B =

 0
0
6

 , C =
[

1 0 0
]

.

We note that the above choice of states is not unique, we could have selected as states the
outputs of the three feedback blocks; this would have produced a different but equivalent
(with the same input–output relationship) system of state equations.

2. Block diagram from state equations

Consider the following system of state equations

ẋ1 = a11x1 + a12x2 + b1u ,

ẋ2 = a21x1 + a22x2 + b2u ,

y = c1x1 + c2x2 .

The A, B, C matrices here are

A =

[
a11 a12

a21 a22

]
, B =

[
b1

b2

]
, C =

[
c1 c2

]
.

The block diagram is constructed as shown in Figure 5.

3. Block diagram and state equations from differential equation

Consider the transfer function between input u and output y

y

u
=

b1s + b0

s3 + a2s2 + a1s + a0
,

which is equivalent to the differential equation

y(iii) + a2ÿ + a1ẏ + a0y = b1u̇ + b0u .
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Figure 5: Block diagram from state equations

This is a third order system, so we need three states. Let our first state be

x1 = y ,

so

y =
[

1 0 0
]  x1

x2

x3

 .

Substitute x1 = y into the equation,

x
(iii)
1 + a2ẍ1 + a1ẋ1 + a0y = b1u̇ + b0u .

To lower the order let

ẋ1 = x2 , this is our first state equation

and substitute again
ẍ2 + a2ẋ2 + a1x2 + a0x1 = b1u̇ + b0u .

Now if we substitute x3 = ẋ2 we see that the u̇ term in the equation will survive, and
this goes against our general state space form ẋ = Ax + Bu. To eliminate the u̇ term we
substitute

x3 = ẋ2 − b1u or

ẋ2 = x3 + b1u this is our second state equation

One more substitution will then result in

ẋ3 + b1u̇ + a2x3 + a2b1u + a1x2 + a0x1 = b1u̇ + b0u ,

or
ẋ3 = −a2x3 − a1x2 − a0x1 + (b0 − a2b1)u ,
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Figure 6: Block diagram and state equations from differential equation

which is the third state equation.

The state equations are ẋ1

ẋ2

ẋ3

 =

 0 1 0
0 0 1
−a0 −a1 −a2


 x1

x2

x3

 +

 0
b1

b0 − a2b1

u ,

and the output equation

y =
[

1 0 0
]  x1

x2

x3

 .

The above form of the A matrix is called a companion form (negative coefficients in the last
row, and ones in the superdiagonal).

The block diagram appears as shown in Figure 6.

1.3 From State Equations to Transfer Function

Consider the standard state space system

ẋ = Ax + Bu ,

y = Cx .

In the Laplace domain (with zero initial conditions) this becomes

sX(s) = AX(s) + BU(s) ,

15



Figure 7: A generic block diagram

Y (s) = CX(s) ,

or

(sI −A)X = BU =⇒ X = (sI − A)−1BU ,

Y = C(sI − A)−1BU .

If we compare the last expression with

Y (s) = G(s)U(s) , where G(s) is the transfer function

we can see that
G(s) = C(sI − A)−1B ,

is the transfer function of the system. This is of the familiar ME 3801 form only in the
case of a single input single output (SISO) system (i.e., both u and y are scalars instead of
vectors). In the more general case of a multiple input multiple output system (MIMO), it
is a transfer function matrix and its individual elements consist of transfer functions in the
usual sense. It can be thought of as a matrix of influence coefficients (the ij element of the
matrix depicts the transfer function between the i–th output and the j–input).

The above helps in constructing compact generic block diagrams, as shown in Figure 7.

ẋ = Ax + Bu , y = Cx

1.4 Poles and Zeros

Recall that for a system in the form

ẋ = Ax + Bu , y = Cx

its transfer function is written as

G(s) = C(sI − A)−1B .

16



The poles of the transfer function are defined as those values of s where the denominator
goes to zero. This means that

(sI −A) is a singular matrix, or

det[sI − A] = 0 or

s = eigenvalue of A .

The zeros of the transfer function are usually defined for SISO systems. In such a case
we have

G(s) = det
[
C(sI − A)−1B

]
,

and using properties of the determinant we get

det[C(sI − A)−1B] =
det[sI −A] · det[C(sI − A)−1B]

det[sI −A]

=

det

[
sI − A −B

C 0

]
det[sI −A]

where we used the fact that

det

[
A B
C D

]
= det A · det[D − CA−1B] .

Therefore, the zeros of G(s) are solutions of

det

[
sI − A −B

C 0

]
= 0 .

As an example, say we have the system

ẋ1 = −3x1 + x2 + u ,

ẋ2 = 2u ,

y = x1 .

The matrices A, B, C are

A =

[ −3 1
0 0

]
, B =

[
1
2

]
, C =

[
1 0

]
.

The poles of the system are

det[sI − A] = det

[
s + 3 1

0 s

]
= s(s + 3) = 0 =⇒ s = 0,−3 ,

and the zeros

det

[
sI −A −B

C 0

]
= det

 s + 3 1 −1
0 s −2
1 0 0

 = 2 + s = 0 =⇒ s = −2 .
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To verify this, let’s get G(s) using classical methods:

ẏ = −3y + x2 + u , or

ÿ = −3ẏ + 2u + u̇ , or

ÿ + 3ẏ = u̇ + 2u , or

Y (s2 + 3s) = U(s + 2) , or

Y (s)

U(s)
=

s + 2

s(s + 3)
,

which agrees with the poles and zeros from state space. These poles and zeros are usually
called open loop poles and zeros since no feedback control action has been defined yet.

Example: Consider the state equations for the submarine example, where the state vector
is

x = [θ, w, q] ,

the output vector is the pitch angle
y = θ ,

and the control input u is the dive plane angle δ

u = δ .

The state equations are the same as before. Typical values for the coefficients are

a11 = −0.064390823 , a12 = −0.1420481 , a13 = 0.1353290 ,

a21 = 0.025208820 , a22 = −0.1479027 , a23 = −0.3599404 ,

b1 = 0.0012883232 , b2 = −0.0034266096 ,

zGB = 0.1ft , U = 5ft/sec .

Using MATLAB and the above values we can find the transfer function

θ

δ
=

−0.0857s− 0.0235

s3 + 1.0615s2 + 0.3636s + 0.0099
,

and we can see that the open loop poles are simply the roots of the denominator polynomial

−0.5159± 0.2584i , −0.0297 .

These are also given by the eigenvalues of matrix A. Notice that the system is open loop
stable. This means that with no control action δ, if an initial disturbance is introduced in
the angle θ, it will go back to zero asymptotically. As the metacentric height zGB gets closer
to zero, one open loop pole goes to zero. (Can you see this from the form of the A matrix?
What is the physical significance of a zero pole?) The open loop zero is the root of the
numerator of the transfer function

−0.2742 .
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The transfer function can also be computed by starting with the equations of motion

θ̇ = q ,

ẇ = a13zGBθ + a11Uw + a12Uq + b1U
2δ ,

q̇ = a23zGBθ + a21Uw + a22Uq + b2U
2δ ,

constructing the block diagram from δ to θ, and reducing it, as we did in Section 1.2.

1.5 Time Response Using State Equations

There are two ways to compute the time response of a system using the state equations:
numerical and analytical.

1. Numerical

State equations are naturally used in digital computer simulation. For example, if we use
Euler’s integration: given x(0) and u(0) at t = 0, then

x(t + ∆t) = x(t) + ẋ(t) ∆t .

∆t is the integration time step which must be selected small enough (with respect to the
natural time constant of the system) for results to be valid; and ẋ(t) = Ax(t) + Bu(t), in
other words we evaluate ẋ using the current value of x and u. Continuing the scheme, we
get

x(∆t) = x(0) + [Ax(0) + Bu(0)] ∆t ,

x(2∆t) = x(∆t) + [Ax(∆t) + Bu(∆t)] ∆t ,

and so on. Although Euler’s method is the simplest and most inaccurate numerical integra-
tion technique available, it is good enough for naval engineering problems where things do
not change very fast in time.

2. Analytical

We want the transient solution for

ẋ = Ax , x(t0) = x(0) ,

where x is the n× 1 state vector, A is the n× n open loop dynamics matrix, and x(0) is the
n× 1 vector of initial conditions. Recall that for a first–order system (n = 1) we would have

ẋ = ax , x(t0) = x(0) .

If we assume
x = αest ,

we get

ẋ− ax = 0 or

αest(s− a) = 0 or

s = a , an eigenvalue .
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Therefore, the solution is
x = αeat .

The unknown constant α can be computed from the initial condition

x(t0) = αeat0 = x(0) ,

giving
α = x(0)e−at0 .

The solution is then
x(t) = ea(t−t0)x(0) ,

where

ea(t−t0) = 1 +
a(t− t0)

1!
+

[a(t− t0)]
2

2!
+

[a(t− t0)]
3

3!
+ · · ·

When the solution is extended to a matrix system (n > 1), the results are completely
parallel,

ẋ = Ax ,

with solution
x(t)︸︷︷︸
vector

= eA(t−t0)︸ ︷︷ ︸
matrix

x(0)︸ ︷︷ ︸
vector

,

where the matrix exponential is defined through a series expansion analogously to its scalar
counterpart

eA(t−t0) = I +
A(t− t0)

1!
+

[A(t− t0)]
2

2!
+

[A(t− t0)]
3

3!
+ · · ·

This is called the state transition matrix denoted by

Φ(t− t0) ≡ eA(t−t0) .

The state transition matrix expresses how the state is changed from its value at t0 to the
state at t by the system with open loop dynamics given by A

x(t) = Φ(t− t0)x(t0) .

We can obtain the complete solution with a control input u(t) as:

d

dt

[
e−Atx(t)

]
= e−At

 ẋ(t)︸︷︷︸
ẋ(t)=Ax+Bu

−Ax(t)

 = e−AtBu(t) .

Integrating,

e−Atx(t) =
∫ t

t0
e−AτBu(τ) dτ + c ,

where c is a vector constant of integration. Now at t = t0 we have

e−At0x(0) = c ,
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giving

e−Atx(t) =
∫ t

t0
e−AτBu(τ) dτ + e−At0x(0) .

Multiplying through by eAt

x(t) = eA(t−t0)x(0) +
∫ t

t0
eA(t−τ)Bu(τ) dτ , t ≥ t0 ,

or

x(t) = Φ(t− t0)x(0)︸ ︷︷ ︸
transient

+
∫ t

t0
Φ(t− τ)Bu(τ) dτ︸ ︷︷ ︸
steady state

.

In most cases
transient = response due to initial state

and this will go to zero for a stable system, while

steady state = response due to input

is given by the above convolution integral. For linear systems, the total response is of course
the sum of the two responses.

The matrix exponential eAt can be computed using a couple of different ways.

• One way is with the above power series expansion

eAt = I +
At

1!
+

(At)2

2!
+

(At)3

3!
+ · · · .

This is efficient only numerically when the series can be truncated to an arbitrary
degree of accuracy. In general, these Taylor series are used to define rather than to
compute functions of a matrix (take a 2× 2 matrix and try to find its cosine using the
appropriate series expansion; then check your answer using MATLAB).

• If A can be diagonalized; i.e., if Λ = T−1AT where T is the matrix of eigenvectors of
A and Λ the diagonal matrix of the eigenvalues of A,

Λ = diag{λ1, λ2, . . . , λn} ,

then
eAt = T−1eΛtT ,

where
eΛt = diag

{
eλ1 , eλ2, . . . , eλn

}
.

We can easily see from the last expression why if at least one of the eigenvalues λi of
A is positive, the system will be unstable.
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For time varying systems of the form

ẋ = A(t)x ,

the state transition matrix is denoted by

Φ(t, t0) ,

and the solution is given by
x(t) = Φ(t, t0)x(0) .

Notice that the state transition matrix for time varying systems is function of both the
current time t and initial time t0, unlike the time invariant system case where Φ was a
function of one variable only, t − t0, the time interval between t and t0. What is more
unfortunate is the fact that closed form expression for Φ(t, t0) does not exist which makes
analysis and control of time varying systems much more difficult than time invariant systems
considered here. As a word of caution, in general,

Φ(t, t0) �= e
∫ t

t0
A(τ)dτ

,

except when the matrices A(t) and
∫

A(t)dt commute; i.e., when

A(t)
(∫

A(t)dt
)

=
(∫

A(t)dt
)

A(t) .

Some general properties of the state transition matrix Φ(t, t0) are

1. It satisfies the differential equation with identity initial conditions,

Φ̇(t, t0) = A(t)Φ(t, t0) ,

Φ(t0, t0) = I .

2. It satisfies the semi–group property,

Φ(t, t0) = Φ(t, t1)Φ(t1, t0) .

3. It is always nonsingular,
Φ−1(t, t0) = Φ(t0, t) .

4. It has a computable determinant,

det Φ(t, t0) = e
∫ t

t0
traceA(τ)dτ

.

The main advantages of using the state transition matrix in system dynamics are two:

• Helps in proving other theorems.
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• Once it has been determined, it makes calculation of the particular solution in response
to some initial conditions and input, much faster.

In general, the analytic method of solution is employed only for theoretic purposes or in
special circumstances; in almost all cases we obtain the solutions numerically. This has
the added advantage that it is not restricted to linear systems, nonlinear systems can be
simulated numerically in much the same way.

Example: Consider the submarine linear equations of motion

θ̇ = q ,

ẇ = a13zGBθ + a11Uw + a12Uq + b1U
2δ ,

q̇ = a23zGBθ + a21Uw + a22Uq + b2U
2δ ,

where we assume a dive plane deflection δ = −0.2 radians (−11.5 degrees). A simulation
algorithm using Euler’s integration is as follows:

• Step 1: Choose integration time step ∆t and initial conditions θ0, w0, q0. Set i = 0.

• Step 2: Using the values of θi, wi, qi, compute θ̇i, ẇi, q̇i from the equations of motion.

• Step 3: Compute

θi+1 = θi + θ̇i ·∆t ,

wi+1 = wi + ẇi ·∆t ,

qi+1 = qi + q̇i ·∆t .

• Step 4: Set i = i + 1 and go back to Step 2.

Typical results of the simulation in terms of the pitch angle θ are shown in Figure 8. As
with any numerical results, however, the real question is: are they correct? The answer to
this borders between art and science, and in the context of system simulations here is a set
of a few checks:

1. In this particular simulation we used a time step ∆t = 0.01 seconds. Is this small
enough? The easiest way to check this is to reduce (or increase) ∆t, say by a factor of
10, and re–run the program. If the results do not change, the above choice for ∆t was
good. A more rational way to do the same thing would be to look at the natural time
constant of the dynamics of the system. The system poles were found in page 18. It
seems that the fastest pole of the system has real part −0.5159, and the time constant
that corresponds to this is about 1/0.5 or 2 seconds. This means that it takes a couple
of seconds for the boat to “listen” to its dive planes, so ∆t = 0.01 should give very
accurate results. In fact in this case we could go as far as ∆t = 0.5 and we would still
be reasonably accurate.
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2. Look again at the system eigenvalues: one of them is certainly dominant, −0.0297,
so the response should approximate that of a first order system with a time constant
1/0.0297, or about 33.5 seconds. Now look at the response of the figure: does it take
approximately 33.5 seconds to go up to 60% of its final value?

3. By now we are convinced that the transient response we see in the figure agrees with our
engineering intuition. How about the final or steady state value of the response? This
is something we can compute exactly. At steady state we should have, θ̇ = ẇ = q̇ = 0,
so that our equations become at steady state:

q = 0 ,

a13zGBθ + a11Uw + a12Uq + b1U
2δ ,

a23zGBθ + a21Uw + a22Uq + b2U
2δ .

Using q = 0, the second and third equations give

a13zGBθ + a11Uw = −b1U
2δ ,

a23zGBθ + a21Uw = −b2U
2δ .

Substituting δ = −0.2 and using the values from page 17 we find

θ = 0.476 radians or 27.3 degrees ,

a result which agrees with the figure.

Simulation of a nonlinear set of equations proceeds in a similar manner. Let’s assume
that the only important nonlinearities in our example come from the trigonometric functions
and not the hydrodynamic forces and moments; in other words the nonlinear equations of
motion are

θ̇ = q ,

ẇ = a13zGB sin θ + a11Uw + a12Uq + b1U
2δ ,

q̇ = a23zGB sin θ + a21Uw + a22Uq + b2U
2δ .

The numerical integration proceeds in exactly the same way as before; the only difference is
that here the values for ẇ and q̇ are computed from the new equations. Typical results are
shown in the previous figure where the difference between linear and nonlinear simulations is
also shown. Naturally, whenever possible, simulations must be performed for the nonlinear
systems since these model the underlying physics more accurately. The steady state value
for θ can be computed from the nonlinear equations in the same way as before, the algebra
is easy in the example case but keep in mind that for general nonlinear equations it may be
very difficult. Here we can find

sin θ = 0.476 or θ = 28.5 degrees .
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Figure 8: Response for the submarine example
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1.6 Canonical Forms

Consider the general state equations

ẋ = Ax + Bu ,

y = Cx .

We can introduce a similarity transformation which will transorm the system into a new set
of state variables; the eigenvalues will be unchanged:

x = Tx′ ,

ẋ = T ẋ′ ,

where x′ is the new set of state variables, and T is the transformation matrix. We can
substitute now into the state equations to get

T ẋ′ = ATx′ + Bu ,

or
ẋ′ = T−1ATx′ + T−1Bu ,

and
y = CTx′ .

The task is to choose T such that T−1AT looks “nice”.

If the matrix A has distinct eigenvalues λi with associated eigenvectors vi, we have

Avi = viλi ,

and we can group these together column by column to get

A
[

v1 v2 · · · vn

]
=

[
v1 v2 · · · vn

]
︸ ︷︷ ︸

T



λ1 0 · · · 0
0 λ2 · · · 0
· · · · · ·
· · · · · ·
· · · · · ·
0 0 · · · λn


︸ ︷︷ ︸

Λ

.

T is the modal matrix of eigenvectors, and Λ is the diagonal matrix of eigenvalues of A. We
then have

AT = TΛ , or T−1AT = Λ .

If we use the modal matrix as the trensformation matrix T , we will produce the normal
coordinate form:

ẋ′ = T−1ATx′ + T−1Bu = Λx′ + B′u ,

y = CTx′ = C ′x′ ,
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Figure 9: Block diagram in control canonical form

where
B′ = T−1B and C ′ = CT .

There are other “nice” forms possible. Two of them are particularly attractive in control
systems.

Say we have a transfer function

G(s) =
Y (s)

U(s)
=

1

s3 + a2s2 + a1s + a0
.

A nice state space form for this system is (verify this) ẋ1

ẋ2

ẋ3

 =

 0 1 0
0 0 1
−a0 −a1 −a2


 x1

x2

x3

 +

 0
0
1

u ,

and

y =
[

1 0 0
]  x1

x2

x3

 .

The block diagram form is shown in Figure 9. This form of the A matrix is called control
canonical form, or first companion form, and is naturally used in controller design as we will
see later.

Consider the same transfer function

Y (s)

U(s)
=

1

s3 + a2s2 + a1s + a0
.

Another nice form for this system is (verify this) ẋ1

ẋ2

ẋ3

 =

 −a2 1 0
−a1 0 1
−a0 0 0


 x1

x2

x3

 +

 0
0
1

u ,
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Figure 10: Block diagram in observer canonical form

and

y =
[

1 0 0
]  x1

x2

x3

 .

The block diagram form is shown in Figure 10. This form of the A matrix is called observer
canonical form, or second companion form, and is naturally used in observer design as we
will see later.

More generally, assume that our transfer function is of the form

Y (s)

U(s)
=

b2s
2 + b1s + b0

s3 + a2s2 + a1s + a0

.

The control canonical form is ẋ1

ẋ2

ẋ3

 =

 0 1 0
0 0 1
−a0 −a1 −a2


 x1

x2

x3

 +

 0
0
1

u ,

and

y =
[

b0 b1 b2

]  x1

x2

x3

 ,

with the block diagram shown in Figure 11.

The observer canonical form for the same system is ẋ1

ẋ2

ẋ3

 =

 −a2 1 0
−a1 0 1
−a0 0 0


 x1

x2

x3

 +

 b2

b1

b0

u ,

and

y =
[

1 0 0
]  x1

x2

x3

 ,
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Figure 11: Block diagram in control canonical form including numerator dynamics

Figure 12: Block diagram in observer canonical form including numerator dynamics
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with the block diagram shown in Figure 12.

You should, of course, verify the above forms! The main difference between the two
forms is that in the control canonical form the B matrix is “clean”, whereas in the observer
canonical form it is the C matrix that appears to be “clean” instead. In both cases, observe
that the characteristic equation of the A matrix can be obtained easily without any algebra.
This is a very nice property of matrices in companion form and is true regardless of the order
of the matrix. Finally, it should be emphasized that both forms represent exactly the same
physical system; the definitions for the state are different in the two forms. In practice, one
definition may make more sense than the other physically, and this is the one that should be
chosen. Although defining convenient states may make the algebra simpler, it is much more
preferable to choose as states variables that make sense physically; using MATLAB makes
all linear algebra calculations relatively straight forward.

1.7 Controllability and Observability

Consider the system
ẋ1

ẋ2

ẋ3

ẋ4

 =


2 3 2 1
−2 −3 0 0
−2 −2 −4 0
−2 −2 −2 −5




x1

x2

x3

x4

 +


1
−2
2
−1

u ,

and

y =
[

7 6 4 2
] 

x1

x2

x3

x4

 .

So far, the system looks nice. Let’s find the transfer function:

G(s) =
Y (s)

U(s)

= C(sI −A)−1B

=
(s + 2)(s + 3)(s + 4)

(s + 1)(s + 2)(s + 3)(s + 4)

=
1

s + 1
,

which is first order instead of fourth as the original system, due to the multiple zero–pole
cancellation. To see what went wrong, let’s transform the system to its normal coordinate
form by diagonalizing A. The matrix of eigenvectors of A is

T =


0.7071 0.4082 0.0000 0.0000
−0.7071 −0.8165 0.4082 0.0000
0.0000 0.4082 −0.8165 −0.4472
0.0000 0.0000 0.4082 0.8944

 .
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Then using our familiar transformation

x = Tx′ or x′ = T−1x ,

the system is transformed into

ẋ′ = A′x′ + B′u ,

y = C ′x′ ,

where

A′ = T−1AT = Λ =


−1 0 0 0
0 −2 0 0
0 0 −3 0
0 0 0 −4

 ,

B′ = T−1B =


1.4142

0
−2.4495

0

 ,

C ′ = CT =
[

0.7071 −0.4082 0 0
]

.

The state equations are then

ẋ′
1 = −x′

1 + 1.4142u ,

ẋ′
2 = −2x′

2 ,

ẋ′
3 = −3x′

3 − 2.4495u ,

ẋ′
4 = −4x′

4 ,

and the output equation
y = 0.7071x′

1 − 0.4082x′
2 .

In block diagram the system in normal coordinates appears as shown in Figure 13. Looking
at this block diagram we can see the following

1. x′
1 : affected by the input; visible in the output;

2. x′
2 : unaffected by the input; visible in the output;

3. x′
3 : affected by the input; invisible in the output;

4. x′
4 : unaffected by the input; invisible in the output.

Therefore, it is fair to say that as far as the state variables go:

1. x′
1 : we can control it and we can observe it;

2. x′
2 : we can not control it but we can observe it;
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Figure 13: Block diagram illustrating uncontrollable/unobservable subsystems
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3. x′
3 : we can control it but we can not observe it;

4. x′
4 : we can not control it and we can not observe it.

The final transfer function, G(s), shows the first subsystem, x′
1, only.

In general, every system

ẋ = Ax + Bu ,

y = Cx ,

can be divided through a series of transformations into four subsystems:

1. A controllable and observable part.

2. An uncontrollable and observable part.

3. A controllable and unobservable part.

4. An uncontrollable and unobservable part.

This is known as Kalman’s decomposition theorem. The thing to remember is that the trans-
fer function of any system is determined only by the controllable and observable subsystem.
That is, the transfer function may contain less information than what is actually needed to
model the complete system.

The precise definition of controllability is:

• A system is said to be state controllable if any initial state x(t0) can be driven to any
final state x(tf ) using possibly unbounded control u(t) in finite time t0 < t < tf .

From the state equations
ẋ = A︸︷︷︸

n× n

x + Bu ,

this should depend only on A and B. The test for controllability is as follows: Compute the

controllability matrix C =
[
B, AB, A2B, . . . , An−1B

]
,

and the system is controllable if and only if the rank of C (the number of linearly independent
rows or columns) is n. Roughly speaking, C shows how possible it is to change the state of a
system using the input. For a single input system B is n× 1 and C is a square matrix. The
test is then that C be nonsingular

det C �= 0 .

We can also test controllability by transforming to the normal coordinate form (with distinct
eigenvalues). The system is then controllable if B′ = T−1B has no zero row.
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Example: Consider the submarine equations of motion θ̇
ẇ
q̇

 =

 0 0 1
a13zGB a11U a12U
a23zGB a21U a22U


 θ

w
q

 +

 0
b1U

2

b2U
2

 δ ,

and substituting the values for the coefficients θ̇
ẇ
q̇

 =

 0 0 1
0.0135 −0.3220 −0.7102
−0.0360 0.1260 −0.7395


 θ

w
q

 +

 0
0.0322
−0.0857

 δ .

The controllability matrix is

C =

 0 −0.0857 0.0674
0.0322 0.0505 −0.0653
−0.0857 0.0674 −0.0404

 ,

which is full rank, 3. Therefore, the system is controllable and we can change any state θ, w,
or q using the dive planes at will. Note, however, that some changes may be impractical or
even impossible in practice; for example, even if the system is controllable it is not feasible
to change the pitch angle to, say, 90 degrees! This would require an enormous dive plane
strength which is not available in practice.

The definition for observability is

• A system is observable if any value of the state x(t0) can be exactly determined using
a set of measurements over a finite period t0 < t < tf .

Observability depends on A and C only, and the test is: Compute the

observability matrix O =



C
CA
CA2

·
·
·

CAn−1


,

and the system is observable if and only if the rank of O is n. Roughly speaking, O shows
how possible it is to reconstruct the state, x, of a system using a limited set of measurements,
y. For a single output case C is 1× n and O is a square matrix. The test is then that O be
nonsingular

detO �= 0 .

We can also test observability by transforming the system to the normal coordinate form
(with distinct eigenvalues). The system will then be observable if C ′ = CT has no zero
column.
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Example: Consider the previous submarine equations of motion, and assume that the only
sensor aboard measures the pitch angle, θ. The measurement equation is

y =
[

1 0 0
]  θ

w
q

 .

Using A and C, the observability matrix is

O =

 1 0 0
0 0 1

−0.0360 0.1260 −0.7395

 ,

and this has rank 3. Therefore the system is observable: using θ measurements only we can
get an estimate of both heave velocity w and pitch rate q (how to do this we will see later).

Now let’s say we are interested in depth as well. The linear equation for the rate of
change of submarine depth, z, is

ż = −Uθ + w .

If we incorporate this as our fourth state equation, the new A matrix is now 4× 4 and B is
4× 1. Keeping the same measurement, θ only, we have

C =
[

1 0 0 0
]

.

If we compute the observabilty matrix O, its rank is 3 instead of 4. Therefore, the system
is unobsvervable and one state (4 − 3 = 1) can not be estimated by looking at the angle θ
only. This is, of course, z. If we assume that we have measurements of z only,

C =
[

0 0 0 1
]

.

The new observability matrix has now full rank (4) which means that using a depth sensor
only we should, in principle, be able to guess all the rest: θ, w, and q. The formalization of
this “guess” constitutes the observer or estimator problem we discuss in Section 3.
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2 CONTROLLER DESIGN

The control design problem can be stated as follows: Given the system

ẋ = A︸︷︷︸
n× n

x︸︷︷︸
n× 1

+ B︸︷︷︸
n× 1

u︸︷︷︸
1× 1

,

how do we find u such that x behaves nicely? We consider for now single input systems (u
is scalar and B is a vector), the multiple input case is studied later. We are particularly
interested in closed loop control, where u is a function of the state x. The case where u is
an explicit function of time only and not x is called open loop control and is studied under
system dynamics. Since we are using the state x to determine the control effort u(x) we call
it feedback control.

2.1 Pole Placement

The simplest case of feedback control u(x) is when u is linear in x,

u = − K︸︷︷︸
1× n

x ,

where K is the feedback gain vector to be determined. Substituting u = −Kx into ẋ =
Ax + Bu we get

ẋ = Ax− BKx , or

ẋ = (A−BK)x .

The actual characteristic equation of this closed loop system is given by

det [A−BK − sI] = 0 .

We can now pick K such that the actual characteristic equation assumes any desired set
of eigenvalues. If we choose the desired locations of the closed loop poles at s = si for
i = 1, . . . , n, the desired characteristic equation is

(s− s1)(s− s2) . . . (s− sn) = 0 .

The required values of K are obtained then by matching coefficients in the two polynomials
of the actual and desired characteristic equations.

Consider the example:

A =

[
1 −5
−5 1

]
, B =

[
1
0

]
.

The open loop eigenvalues are

det[sI − A] =

∣∣∣∣∣ s− 1 5
5 s− 1

]
= 0 =⇒ (s− 1)2 − 5 = 0 =⇒ (s− 6)(s + 4) = 0 ,
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so we have an unstable system with no control. If the pair (A, B) is controllable we are guar-
anteed that we can pick the elements of K to produce an arbitrary characteristic equation.
In this case we have

AB =

[
1
−5

]
, C =

[
1 1
0 −5

]
, det C = −5 �= 0 ,

so the system is controllable. Now suppose we want closed loop eigenvalues at −10± 10i so
that we get a damping ratio ζ = 0.707. The desired closed loop characteristic equation is

(s + 10− 10i)(s + 10 + 10i) = s2 + 20s + 200 = 0 .

Form the matrix

A−BK =

[
1 −5
−5 1

]
−

[
1
0

] [
k1 k2

]
=

[
1− k1 −5− k2

−5 1

]
,

and the actual closed loop characteristic equation is

det[A− BK − sI] =

∣∣∣∣∣ 1− k1 − s −5− k2

−5 1− s

∣∣∣∣∣ = 0 , or

1− k1 − s− s + k1s + s2 − 25− 5k2 = 0 , or

s2 + (k1 − 2)s + (−k1 − 5k2 − 24) = 0 ,

requiring

−2− k1 = 20 ,

−k1 − 5k2 − 24 = 200 .

Solving this we get

k1 = 22 ,

k2 = −246

5
,

and the control law is

u = −k1x1 − k2x2 = −22x1 +
246

5
x2 .

Note that these gains may be impossible or impractical to build for this system. This would
require some compromise in the specification which led to the desired closed loop eigenvalues.
In general, the above approach yields a system of n linear equations to be solved for the n
elements of K provided (A, B) is controllable. This method is known as pole placement.

Example: Consider the submarine equations

θ̇ = q ,

ẇ = a13zGBθ + a11Uw + a12Uq + b1U
2δ ,

q̇ = a23zGBθ + a21Uw + a22Uq + b2U
2δ
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Let the control law be
δ = −k1θ − k2w − k3q .

Substituting into the equations we get the closed loop system

θ̇ = q ,

ẇ = (a13zGB − b1U
2k1)θ + (a11U − b1U

2k2)w + (a12U − b1U
2k3)q ,

q̇ = (a23zGB − b2U
2k1)θ + (a21U − b2U

2k2)w + (a22U − b2U
2k3)q ,

or, in matrix form, θ̇
ẇ
q̇

 =

 0 0 1
a13zGB − b1U

2k1 a11U − b1U
2k2 a12U − b1U

2k3

a23zGB − b2U
2k1 a21U − b2U

2k2 a22U − b2U
2k3

 .

The characteristic equation of the closed loop system is

det

∣∣∣∣∣∣∣
0− s 0 1

a13zGB − b1U
2k1 a11U − b1U

2k2 − s a12U − b1U
2k3

a23zGB − b2U
2k1 a21U − b2U

2k2 a22U − b2U
2k3 − s

∣∣∣∣∣∣∣ = 0 ,

and after some algebra this reduces to

s3 + (−D′
1 + A2k2 + A3k3)s

2 + (−B1k1 −B2k2 − B3k3 −D′
2)s

+(−C1k1 − C2k2 −D′
3) = 0 ,

where we have denoted

A2 = b1U
2 , A3 = −B1 = b2U

2 ,

B2 = (b1a22 − b2a12)U
3 , B3 = C1 = (b2a11 − b1a21)U

3 ,

C2 = (a23b1 − a13b2)U
2zGB , D′

1 = (a11 + a22)U ,

D′
2 = a23zGB + (a12a21 − a11a22)U

2 , D′
3 = (a13a21 − a11a23)zGBU .

Now assume that the we wish to place the closed loop poles at −p1, −p2, −p3. This means
that the desired characteristic equation is

(s + p1)(s + p2)(s + p3) = 0 , or

s3 + α1s
2 + α2s + α3 = 0 ,

with

α1 = p1 + p2 + p3 ,

α2 = p1p2 + p2p3 + p3p1 ,

α3 = p1p2p3 .

Then, the control gains can be computed by equating coefficients of the actual and the
desired characteristic equations

A2k2 + A3k3 = −α1 −D′
1 ,

B1k1 + B2k2 + B3k3 = α2 + D′
2 ,

C1k1 + C2k2 = α3 + D′
3 .
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This method of equating coefficients is feasible only for small systems and it always produces
a linear system in the unknown gains ki.

The above approach can be simplified if the system is written in its control canonical
form

ẋ′ = A′x′ + B′u , y = C ′x′ ,

and we are seeking a control law of the form

u = −K ′x′ .

As an example say the open loop characteristic equation is

s4 + a3s
3 + a2s

2 + a1s + a0 = 0 ,

and the state space form of the system is
ẋ′

1

ẋ′
2

ẋ′
3

ẋ′
4

 =


0 1 0 0
0 0 1 0
0 0 0 1
−a0 −a1 −a2 −a3




x′
1

x′
2

x′
3

x′
4

 +


0
0
0
1

u ,

and

y =
[

b0 b1 b2 b3

] 
x′

1

x′
2

x′
3

x′
4

 ,

with the control law

u = −
[

k′
1 k′

2 k′
3 k′

4

] 
x′

1

x′
2

x′
3

x′
4

 .

The transfer function is

Y (s)

U(s)
=

b3s
3 + b2s

2 + b1s + b0

s4 + a3s3 + a2s2 + a1s + a0
.

Observe that no algebra is needed here, if we have the transfer function we can write the
control canonical form directly.

We can select now our desired closed loop characteristic equation

s4 + α3s
3 + α2s

2 + α1s + α0 .

Then

A−BK ′ =


0 1 0 0
0 0 1 0
0 0 0 1

−a0 − k′
1 −a1 − k′

2 −a2 − k′
3 −a3 − k′

4

 ,
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with closed loop characteristic equation

s4 + (a3 + k′
4)s

3 + (a2 + k′
3)s

2 + (a1 + k′
2)s + (a0 + k′

1) = 0 .

Again, since we are working with a control canonical form, no algebra has been necessary so
far. We can now solve for the gains directly without solving a system of linear equations

k′
1 = −a0 + α0 ,

k′
2 = −a1 + α1 ,

k′
3 = −a2 + α2 ,

k′
4 = −a3 + α3 ,

and the control law is

u = −k′
1x

′
1 − k′

2x
′
2 − k′

3x
′
3 − k′

4x
′
4 ,

= −(−a0 + α0)x
′
1 − (−a1 + α1)x

′
2 − (−a2 + α2)x

′
3 − (−a3 + α3)x

′
4 .

Draw a block diagram of the system before and after feedback control; do you see what
happens?

To summarize, if we have a system

ẋ′ = Ax′ + Bu ,

in the control canonical form, we can introduce a feedback control law

u = −K ′x′ ,

with feedback gains
K ′ = −a + α ,

where

a = coefficients of original characteristic equation ,

α = coefficients of desired characteristic equation .

If the system is not in the control canonical form we have to transform it. Suppose that
the original state x is transformed into x′ through the transformation

x′ = Tx ,

and
ẋ = Ax + Bu ,

becomes
ẋ′ = TAT−1x′ + TBu .

For the transformed system, which is in the control canonical form,

u = −K ′x′ ,
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where
K ′ = −a′ + α = −a + α ,

since the characteristic equation is invariant under a change of state variables. The control
law is

u = −K ′x′ ,

= −K ′Tx ,

= −Kx ,

where
K︸︷︷︸
1×n

= K ′︸︷︷︸
1×n

T︸︷︷︸
n×n

,

is the gain in the original system. This can also be written as

KT︸︷︷︸
n×1

= T T︸︷︷︸
transpose

(−a + α)︸ ︷︷ ︸
n×n

.

We only need to find the transformation matrix T which will transform any system into
its control canonical form. The desired matrix T is the product of two matrices

T = V U ,

where U is the inverse of the controllability matrix C
U = C−1 .

Notice that if the system is uncontrollable, U does not exist. Matrix V is given by

V = W−1 ,

where

W =



1 an−1 an−2 · · · a1

0 1 an−1 · · · a2

0 0 1 · · · a3

· · · · ·
· · · · ·
· · · · ·
0 0 0 · · · 1


;

the first row is formed by the coefficients of the characteristic polynomial of A

det[A− sI] = sn + an−1s
n−1 + · · ·+ a1s + a0 = 0 ,

and the other rows are pushed left by one at a time. Therefore, the desired control law is

KT =
[
(CW )T

]−1
(−a + α) .

Now that we have a formula for the gains of a controllable single input system that will
place the poles at any desired location, several questions arise:
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1. If the closed loop poles can be placed anywhere, where should they be placed?

2. How can the technique be extended to multiple input systems?

3. What if not all states are available for feedback and we have to use output measure-
ments only?

4. What do we do if we have external disturbances and we want to track a reference
input?

5. How do we handle effects of sensor noise?

6. Can we optimize the performance of a control system?

The above questions are the subject of the remaining of these notes.

2.2 Pole Location Selection

For a second order system we may have some transient response specifications, such as rise
time, percent overshoot, or settling time. These result in an allowable region in the s–plane
from which we can easily get the desired locations of the poles. For higher order systems we
can employ the concept of dominant roots, select two roots as dominant which means that
we want to place the remaining roots more negative so that the transient response is not
affected significantly. In selecting poles for a physical system we need to look at the physics;
we can not specify poles that are too negative, for example. This would demand a very small
time constant for the control system and the physical system may not be able to react that
fast.

The control law u = −Kx implies that for a given state x the larger the gain, the larger
the control input. In practice, however, there are limits on u: actuator size and saturation.
Occasional control saturation is not serious and may be even desirable; a system which never
saturates is probably overdesigned.

Example: Control design by pole placement is very easy using MATLAB, the appropriate
command is place which accepts as inputs the A, B matrices and a vector of the desired
closed loop poles, and returns the gain vector K. For example, consider the submarine
equations  θ̇

ẇ
q̇

 =

 0 0 1
0.0135 −0.3220 −0.7102
−0.0360 0.1260 −0.7395


︸ ︷︷ ︸

A

 θ
w
q

 +

 0
0.0322
−0.0857


︸ ︷︷ ︸

B

δ .

Say we want to design a control law to stabilize the submarine to a level flight path at θ = 0.
We want to be able to return to level after an initial small disturbance in θ within the time it
takes to travel one ship length, this is reasonable. Since the boat is about 17 feet long and it
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travels at 5 ft/sec, that time is about 3.5 seconds; so we want the control law to have a time
constant of 3 seconds. This means we want to place the closed loop poles at approximately
−0.3. Using place we specify poles at −0.3, −0.31, −0.32 (place does not like poles that
are exactly the same) and we find the gains in the control law

δ = −(−0.8451θ − 1.4733w + 0.9807q) .

Using a simulation program we plot the response starting from 30 degrees positive (bow up)
pitch angle. We also set a limit in the dive plane angle between ±0.4 radians. We can see
from the results that initially the planes saturate at the upper limit and they come off as
θ approaches zero. For comparison, we show the response with no control (planes fixed at
zero). If we specify more negative poles, at −0.9, −0.91, −0.92, the control law becomes

δ = −(−31.6147θ − 1.2581w − 24.6634q) .

Observe how unrealistically high these gains are: for a unit change in the pitch angle θ our
controller demands 32 degrees of plane action! The response is also shown in the figure;
there is more plane activity than in the previous case. However, since we hit the saturation
limit, the response is not any faster and it overshoots the desired value. If we specify less
negative poles at −0.1, −0.11, −0.12, we end up with a control law

δ = −(0.3640θ − 1.2581w + 8.0657q) .

This is a very soft control law, it takes considerably longer for θ to reach zero and there is
very limited plane activity.

From the above results, that are plotted in Figures 14 and 15, we can see that:

• Poles that are specified too negative will not necessarily result in faster response for a
physical system; we may reach the hardware limitations of the system.

• Poles that are specified too negative will result in a high gain tight control law which
will exhibit continuous control action; the system will over–respond to everything,
including measurement noise.

• Poles that are specified not negative enough will result in soft response with a very
quite control system that hardly works at all.

• Proper pole selection can be achieved by knowing the physics of the system we are
trying to control, and by a trial–and–error simulation process.

The effect of control system gain on pole locations can be appreciated by considering the
formula

KT =
[
(CW )T

]−1
(−a + α) .

The gains are proportional to the amounts that the poles are to be moved: the less the poles
are moved the smaller the gain matrix and therefore the control effort. It is also seen that
the control system gains are inversely proportional to the controllability test matrix C. The
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Figure 14: Pitch angle versus time for different closed loop poles
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Figure 15: Control effort for different closed loop poles
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Figure 16: Butterworth pole configurations

less controllable the system, the larger the gains that are needed to make a change in the
system poles.

Some broad guidelines for pole selection are:

• Select a bandwidth high enough to achieve desired speed of response.

• Keep the bandwidth low enough to avoid exciting unmodeled high frequency effects
and undesired response to noise.

• Place the poles at approximately uniform distances from the origin for efficient use of
the control effort.

We can also use standard characteristic polynomials such as minimizing the ITAE crite-
rion, Bessel transfer functions, or Butterworth pole configurations. A typical sketch of the
Butterworth poles is shown in Figure 16.

The closed loop poles tend to radiate out from the origin along the spokes of a wheel in
the left half plane as given by the roots of(

s

ω0

)2k

= (−1)k+1 ,

where k is the number of roots in the left half plane and ω0 the natural frequency. In the
absence of any other consideration, a Butterworth configuration is often suitable. Note,
however, that as the order of the system k becomes high, one pair of poles comes very close
to the imaginary axis. It might be desirable then to move these poles further into the left
half plane.

Optimal control strategies can also be used to optimize some performance index. One
common choice here is

min J =
∫ T

0
(xT Qx + uT Ru) dt ,

where

Q = weighting matrix of the error x ,

R = weighting matrix of the control effort u .
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This is the Linear Quadratic Regulator problem which is studied later in these notes.

2.3 Multiple Input Systems

If the dynamic system under consideration

ẋ = Ax + Bu ,

has more than one inputs, that is B has more than one columns, then the gain matrix K in
the control law

u = −Kx ,

has more than one rows. Since each row of K furnishes n adjustable gains, it is clear than
in a controllable system there will be more gains available than needed to place all of the
closed loop poles. If we have m inputs, then the equation

det |A−BK| = specified characteristic polynomial

gives n equations with n × m unknowns. More than one solutions exist in general. This
gives the designer more flexibility: it is possible to specify all the closed loop poles and still
be able to satisfy other requirements. There are several possibilities here, some of them are
briefly discussed below.

1. We can make one control proportional (or related) to the other. For example if we
have a two input system

ẋ = Ax +
[

b1 b2

] [ u1

u2

]
,

we can choose
u2 = λu1 ,

with λ some selected constant of proportionality, and the system becomes

ẋ = Ax +
[

b1 + λb2

] [ u1

u2

]
,

which is single input. The underlying physics should be the guidance for selection in
this method. For example, say that our submarine is equipped with two inputs for
depth control: independent stern and bow planes, call them δs and δb. If rapid depth
change is what we want at a regular cruising speed then it makes sense to assume that
δb = −δs. This deflects the bow planes differentially than stern planes and produces
maximum control authority through maximizing the vehicle pitching moment. If on
the other hand, the vehicle is equipped with vertical stern and bow thrusters and is
operating near hover, it is natural to command the same instead of opposite values for
the two control inputs in order to achieve depth control.
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2. Another possible method of selecting a particular structure for the gain matrix is to
make each control variable depend on a different group of state variables that are phys-
ically more closely related to that control variable than to the other control variables.
For example, suppose that our submarine is equipped with stern planes and sail planes
at about amidships. Then is makes sense to use the stern planes to directly control
pitch angle and the sail planes for direct depth control. Formally, what we are doing in
this case is to specify not just the eigenvalues of the closed loop matrix but also (some
of) its eigenvectors. This achieves a more precise shaping of the response.

3. Another possibility might be to set some of the gains to zero. For example, it is possible
(sometimes) to place the closed loop poles at the desired locations with a gain matrix
which has a column of zeros. This means that the state variable corresponding to that
column is not needed in the generation of any of the control signals in the vector u, and
hence there is no need to measure (or estimate) that state variable. This simplifies the
resulting control system structure. If all the state variables, except those corresponding
to columns of zeros in the gain matrix, are accessible for measurement then there is no
need for an observer to estimate the state variables that cannot be measured. A very
simple and robust control system is the result.

Hand calculation of the system of equations to be solved for the gains is possible for the
multiple input case just like the single input. The only difference here is that unlike the
single input where we always end up with a system of linear simultaneous equations in ki,
for multiple inputs it is possible to come up with a nonlinear system for kij.
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3 OBSERVER DESIGN

So far we have developed the means to establish a control law; i.e, software which commands
a certain action from the system actuators. What is needed is the state x. In reality, however,
what is available to us from hardware is the output y through a set of sensors. In order to
complete the picture, therefore, we need to estimate x given y.

3.1 State Estimators

Say we have the system
ẋ = Ax + Bu ,

and we want to use a control
u = −Kx .

Suppose, however, that we only have the measurements (output)

y︸︷︷︸
p×1

= C︸︷︷︸
p×n

x︸︷︷︸
n×1

, p < n ,

instead of x. Note that if p were equal to n then we could use x = C−1y and our troubles
would be over; the interesting case is when we have less sensors available than the number
of states, p < n. It may be undesirable, expensive, or impossible to directly measure all of
the states. What we can do is to dynamically use the p measurements to estimate all the
states in x. If we denote the estimate of the state x as x̂, the error in that estimate will be

x̃︸︷︷︸
error

= x︸︷︷︸
actual

− x̂︸︷︷︸
estimate

.

Then we could feed back this estimate x̂ in place of the actual state; i.e.,

u = −Kx̂ .

What we need now is to construct a state estimator or observer. Consider feeding back the
difference between the estimated and measured outputs and correcting the model continu-
ously with this error signal

˙̂x = Ax̂ + Bu + L(y − Cx̂) ,

where

Ax̂ + Bu : system model, x̂ should behave like x ,

L : observer gain matrix, to be determined ,

y : actual measurement ,

Cx̂ : measurement if x were x̂ .
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In order to establish L we can consider the dynamics of the error in the estimate,

˙̃x = ẋ− ˙̂x =⇒
˙̃x = Ax + Bu− Ax̂−Bu− L(y − Cx̂) =⇒
˙̃x = A(x− x̂)− L(Cx− Cx̂) =⇒
˙̃x = (A− LC)x̃ .

The error in the estimate will be determined by the eigenvalues of [A − LC] which we can
obtain from det[A − LC − sI] = 0. If (A, C) is observable, we can pick the elements of
L to give the error arbitrary dynamics, similarly to the control design. We should choose
the eigenvalues of [A − LC] to be further to the left in the s–plane than the eigenvalues of
[A−BK]. Then the error in the estimate will die quickly compared to the dynamics of the
system.

The combined controller and observer equations are

ẋ = Ax− BKx̂ ,
˙̂x = LCx + (A− LC − BK)x̂ ,

y = Cx ,

or [
ẋ
˙̂x

]
=

[
A −BK

LC A− LC −BK

] [
x
x̂

]
,

and

y =
[

C 0
] [ x

x̂

]
.

In block diagram form this appears as shown in Figure 17.

If we use
u = −Kx̂ = −K(x− x̃) ,

we get [
ẋ
˙̃x

]
=

[
A− BK BK

0 A− LC

] [
x
x̃

]
,

which has the following characteristic equation

det[A− BK − sI] · det[A− LC − sI] = 0 .

This indicates that the dynamics of the observer are completely independent of the dynamics
(eigenvalues) of the controller. Thus, K and L can be designed separately.

3.2 Duality

Remember the controller design for ẋ = Ax + Bu, y = Cx by placing the eigenvalues of
[A − BK]. For the observer design we want to place the eigenvalues of [A − LC]. But the
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Figure 17: Compensator block diagram
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eigenvalues of [A − LC] are the same as the eigenvalues of [A − LC]T and these are the
same as the eigenvalues of [AT −CT LT ]. Therefore, instead of designing an observer for the
system ẋ = Ax + Bu, y = Cx we can design a controller for ẋ = AT + CT u. This is the
duality principle between controller and observer,

controller ←→ observer

A ←→ AT

B ←→ CT

C ←→ BT

For any system

ẋ = Ax + Bu ,

y = Cx ,

its dual system is

ẋ = AT x + CT u ,

y = BT x .

The controllability matrix of a system is the observability matrix of its dual and vice versa.
If in the observer canonical form, starting from the output, all signal flows are reversed —
summers are changed to nodes and nodes are changed to summers — we obtain the control
canonical form.

3.3 Pole Placement for Single Output Systems

When there is only one output variable, the output equation is

y =
[

c1 c2 · · · cn

]


x1

x2
...

xn

 .

Thus, C is a row vector
C =

[
c1 c2 · · · cn

]
,

and the observer gain matrix L is a column vector

L =


�1

�2
...
�n

 .

Now recall the expression we had for the controller gain matrix

KT =
[
(CW )T

]−1
(−a + α) .
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By duality, the observer gain matrix must be

L =
[
(OW )T

]−1
(−a + α) ,

where

O = observability matrix ,

a = coefficients of original characteristic equation ,

α = coefficients of desired characteristic equation .

The presence of more than one outputs provides more flexibility; it is possible to place all
the eigenvalues and do other things too. Or, alternatively, some of the observer gains can
be set to zero to simplify the resulting observer structure.

3.4 Compensator Design

Recall that the eigenvalues of the controller were not affected by the eigenvalues of the
observer, this allows us to design the controller and observer separately which is known as
the separation principle. The combination is called a compensator,

(controller) + (estimator) = (compensator) .

For the system

ẋ = Ax + Bu ,

y = Cx ,

we have the controller
u = −Kx ,

the observer
˙̂x = Ax̂ + Bu + L(y − Cx̂) ,

and, using the separation principle, we can write

u = −Kx̂ .

The block diagram of the compensator is shown in Figure 17.

Using the above equations we get

ẋ = Ax− BKx̂

= Ax− BK(x− x̃)

= (A−BK)x + BKx̃

= ACx + BKx̃ ,

and
˙̂x = Ax̂−BKx̂ + L(Cx− Cx̂) .
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Therefore,
˙̃x = ẋ− ˙̂x = (A− LC)x̃ = Âx̃ .

Taking Laplace transforms,

(sI − AC)x(s) = BKx̃(s) + x(t0) ,

(sI − Â)x̃(s) = x̃(t0) =⇒ x̃(s) = (sI − Â)−1x̃(t0) .

Therefore,

x(s) = (sI − AC)−1BKx̃(s) + (sI − AC)−1x(t0) ,

= (sI − AC)−1BK(sI − Â)−1x̃(t0) + (sI −AC)−1x(t0) ,

and we can see that the transient response of the state is the sum of two part: one part due
to the initial estimation error x̃(t0), and one part due to the initial state x(t0).

In order to obtain the transfer function of the compensator, we have

˙̂x = (A− BK − LC)x̂ + Ly ,

or
x̂(s) = (sI −A + BK + LC)−1Ly(s) .

Then
u(s) = −Kx̂(s) = −K(sI −A + BK + LC)−1Ly(s) .

The transfer function of the compensator, D(s), is defined between plant output and plant
input by

u(s) = −D(s)y(s) ,

so

D(s) = K(sI − A + BK + LC)−1L

= K(sI − ÂC)−1L ,

where
ÂC = A− BK − LC = AC − LC = Â− BK .

We can define the following:

• compensator poles = zeros of |sI − ÂC |,
• open loop plant poles = zeros of |sI − A|,
• controller poles = zeros of |sI −AC |,
• observer poles = zeros of |sI − Â|.
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All of the above are, in general, different. If Â and AC are chosen independently, it may
even happen that ÂC has roots in the right half s–plane, which means that even though
the complete system is still stable, we can get an “unstable” compensator. This is not
catastrophic, the main serious consequence of an unstable compensator is that the closed
loop system will only be conditionally stable and, therefore, may not be very robust with
respect to unmodeled dynamics and parameter variations.

In summary, the compensator design proceeds as follows:

1. Design a control law assuming that all states are available.

2. Design an observer to estimate the (missing) states.

3. Combine the full state control law with the observer to obtain the compensator design.

Example: Consider the submarine pitch angle control developed in the previous section.
With poles at −0.3, and if not all states θ, w, q are directly measurable, we have to use

δ = −(−0.8451θ̂ − 1.4733ŵ + 0.9807q̂) .

Assume, however, that the only sensor we have is a rate gyro that measures the pitch rate q.
We have to design an observer to estimate θ, w, q, using the q measurements. First, is this
possible? To do this we have to check the observability of the system. The output equation
is

y =
[

0 0 1
]  θ

w
q

 ,

and the observability matrix is

O =

 0 0 1.0000
−0.0360 0.1260 −0.7395
0.0283 −0.1338 0.4214

 ,

which has rank 3; i.e., the system is observable. In order to design the observer gains we
use the duality principle and we issue the MATLAB command place which we already used
for the controller: here we use A′ instead of A and C ′ instead of B (the prime in MATLAB
signifies a transpose). The observer poles are selected, say at −0.6, −0.61, −0.62; these are
twice as negative as the controller poles so the error in the estimate should die out faster
than the system dynamics. The observer gains are

L =

 −21.9614
−2.2636
0.7685

 ,

and the observer equations
˙̂x = Ax̂ + Bu + L(y − Cx̂) ,
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Figure 18: Compensator response for fast observer poles

or, if we substitute the values for A, B, C, and L,

˙̂
θ = q̂ − 21.9614(q − q̂) ,
˙̂w = 0.0135θ̂ − 0.322ŵ − 0.7102q̂ + 0.0322δ − 2.2636(q − q̂) ,
˙̂q = −0.036θ̂ + 0.126ŵ − 0.7395q̂ − 0.0857δ + 0.7685(q − q̂) .

The observer produces estimates of the states and these are used in the control law we
established previously (with poles at −0.3),

u = 0.8451θ̂ + 1.4733ŵ − 0.9807q̂ .

The system is subjected to an initial disturbance θ = 30 degrees, while for the observer we
use θ̂ = 0 since the observer does not know the true value of θ. The results of the simulation
are presented in Figure 18 where it can be seen that θ approaches zero in much the same
way as for the complete state measurement case of the previous section. The estimate θ̂
approaches the true value of θ quickly.

If we were to reduce the absolute value of the observer poles, say to −0.1, −0.11, −0.12 we
are faced with the following pathological situation: In order for the control law to return the
system to its equilibrium, it needs an accurate estimate of the states as quickly as possible.
Since the observer poles, however, are less negative than the controller poles this estimate
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Figure 19: Compensator response for slow observer poles
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will be slow which means that it will take longer for the control law to stabilize the system
to its equilibrium point. Indeed, in such a case the observer gains are

L =

 0.8664
−0.4817
−0.7315

 ,

and the results of the simulation are shown in Figure 19. It can be seen that the response of
the system is slow; even though the control poles were specified at −0.3 the response looks
more like the −0.1 controller poles of the perfect state knowledge case of the previous section
(why?).

It appears that we need to have the observer poles as negative as possible, compared to
the closed loop control poles. A good rule–of–thumb practice is twice as negative. Beyond
that we do not gain much and we run into problems with sensor noise, more about this later.
For now, it is enough to recognize the fact that as the observer poles become more negative,
the elements of L become larger in absolute value (verify this using MATLAB) and any kind
of sensor noise that gets into our measurements will be magnified. There is a limit on how
large the elements of L can be and this depends on the quality of our sensors. This is the
optimal observer design or Kalman filter problem which we discuss later.

3.5 Reduced Order Observers

The previously developed observer is usually called a full order observer: its order is the same
as that of the system. A full order observer estimates all the states in a system, regardless
whether they are measured or not. This does not seem to be too bad, except imagine we
have a system with ten states and we can measure eight of them; wouldn’t it be better
to estimate two instead of all ten states? The formalization of this procedure leads to the
reduced order estimator.

Suppose we can measure some of the state variables contained in x. We partition the
state vector x into two sets,

x1 : variables that can be measured directly ,

x2 : variables that cannot be measured directly .

The state equations are broken down to

ẋ1 = A11x1 + A12x2 + B1u ,

ẋ2 = A21x1 + A22x2 + B2u ,

and the observation equation is
y = C1x1 ,

where C1 is square and nonsingular matrix. The full order observer for the states is then

˙̂x1 = A11x̂1 + A12x̂2 + B1u + L1(y − C1x̂1) ,
˙̂x2 = A21x̂1 + A22x̂2 + B2u + L2(y − C1x̂1) .
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Figure 20: Block diagram of reduced order observer
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But why take the trouble to implement the first observer equation for x̂1 when we can solve
for x1 directly?

x̂1 = x1 = C−1
1 y .

In this case the observer for those states that cannot be measured directly becomes

˙̂x2 = A21C
−1
1 y + A22x̂2 + B2u ,

which is a dynamic system of the same order as the number of state variables that cannot
be measured directly. The dynamic behavior of this reduced order observer is governed by
the eigenvalues of A22, a matrix over which the designer has no control. Since there is no
assurance that the eigenvalues of A22 are suitable, we need a more general system for the
reconstruction of x̂2. We take

x̂2 = Ly + z ,

where
ż = Fz + Gy + Hu .

Define the estimation error

e = x− x̂ =

[
x1 − x̂1

x2 − x̂2

]
=

[
e1

e2

]
=

[
0
e2

]
,

and we get

ė2 = ẋ2 − ˙̂x2

= A21x1 + A22x2 + B2u− Lẏ − ż

= A21x1 + A22x2 + B2u− LC1ẋ1 − Fz −Gy −Hu

= A21x1 + A22x2 + B2u− LC1(A11x1 + A12x2 + B1u)

−F (x̂2 − Ly)−Gy −Hu .

Since
x̂2 − Ly = x2 − e2 − Ly = x2 − e2 − LC1x1 ,

we get

ė2 = Fe2 + (A21 − LC1A11 −GC1 + FLC1)x1

+(A22 − LC1A12 − F )x2 + (B2 − LC1B1 −H)u .

In order for the error to be independent of x1, x2, and u, the matrices multiplying x1, x2,
and u must vanish

F = A22 − LC1A12 ,

H = B2 − LC1B1 ,

G = (A21 − LC1A11)C
−1
1 + FL .

Then
ė2 = Fe2 ,
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and for stability the eigenvalues of F must lie in the left half s–plane. Therefore, we see that
the problem of reduced order observer is similar to the full order observer with (A22−LC1A12)
playing the role of (A− LC). The block diagram schematic appears as shown in Figure 20.

Example: Consider the submarine problem, and assume that both the pitch angle θ and
pitch rate q are available through measurements. What we need is to estimate the vertical
translational (heave) velocity w. Let’s design a reduced order observer to do the job. We
start with our equations of motion and we re–write them so that the variables that are
measurable go first

θ̇ = q ,

q̇ = a21Uw + a22Uq + a23zGBθ + b2U
2δ ,

ẇ = a11Uw + a12Uq + a13zGBθ + b1U
2δ .

In matrix form we have θ̇
q̇
ẇ

 =

 0 1 0
a23zGB a22U a21U
a13zGB a12U a11U


 θ

q
w

 +

 0
b2U

2

b1U
2

 δ ,

and the measurement equation is

y =

[
θ
q

]
=

[
1 0 0
0 1 0

]  θ
q
w

 .

Therefore, the matrices are

x1 =

[
θ
q

]
, x2 =

[
w

]
,

A11 =

[
0 1

a23zGB a22U

]
, A12 =

[
0

a21U

]
, A21 =

[
a13zGB a12U

]
, A22 =

[
a11U

]
,

B1 =

[
0

b2U
2

]
, B2 =

[
b1U

2
]
, C1 =

[
1 0
0 1

]
, L =

[
�1 �2

]
.

The reduced order observer equations are

ŵ = �1θ + �2q + z ,

ż = Fz + Gy + Hδ .

Following the design procedure we have

F = a11U −
[

�1 �2

] [ 0
a21U

]
= a11U − �2a21U = p ,

where p is the desired observer pole (F here is a scalar since there is only one state variable
to be estimated). We see that �1 plays no role in determining F and, therefore, we can
choose

�1 = 0 ,
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for simplicity. The other observer gain �2 is computed from

�2 =
a11U − p

a21U
.

Then we get

H = b1U
2 −

[
0 �2

] [ 0
b2U

2

]
= b1U

2 − �2b2U
2 ,

G = A21 − LA11 + FL

=
[

a13zGB a12U
]
−

[
0 �2

] [ 0 1
a23zGB a22U

]
+ p

[
0 �2

]
=

[
a13zGB a12U

]
−

[
�2a23zGB �2a22U

]
+
[

0 p�2

]
=

[
a13zGB − �2a23zGB a12U − �2a22U + p�2

]
.

The observer equations are then

ż = pz + (a13zGB − �2a23zGB)θ + (a12U − �2a22U + p�2)q

+(b1U
2 − �2b2U

2)δ ,

ŵ = �2q + z .

Simulation results for control poles at −0.3 and observer pole at −0.6 are shown in Figure
21, in terms of w and ŵ versus time. In this simulation the initial conditions were changed
to θ = q = 0, w = 0.5 ft/sec, and ŵ = 0. This was done to better show the convergence of
ŵ to the true value w. The same remarks concerning selection of observer poles apply for
the reduced order observer as for the full order observer design.
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Figure 21: Response of the reduced order estimator
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4 DISTURBANCES AND TRACKING SYSTEMS

The best way to start with the introduction of the reference input is via our submarine
example:

Example: Once more, consider the submarine equations of motion

θ̇ = q ,

ẇ = a11Uw + a12Uq + a13zGBθ + b1U
2δ ,

q̇ = a21Uw + a22Uq + a23zGBθ + b2U
2δ .

We have a feedback control law which will guarantee stability, of the form

δ = −k1θ − k2w − k3q ,

where the gains k1, k2, k3 correspond, say, to the −0.3 poles. What if we wanted the boat
to stabilize to, say, θ = Θ where Θ �= 0? The first reaction might be to use

δ = −k1(θ −Θ)− k2w − k3q .

To see if this is enough let’s simulate the system with Θ = 20 degrees, and starting with
zero initial conditions. The results are shown in Figure 22, in terms of θ/Θ versus t (solid
curve) where it is clear that the system missed its final value, it stabilized but to the wrong
angle. To see what went wrong, consider the above equations. At steady state all time
derivatives go to zero, which means θ̇ = q = 0, ẇ = 0, and q̇ = 0. From the equations of
motion this means that

a11Uw + a13zGBθ + b1U
2δ = 0 ,

a21Uw + a23zGBθ + b2U
2δ = 0 ,

and if we use the steady state control law

δ = −k1θ + k1Θ− k2w ,

we get

(a11U − b1U
2k2)w + (a13zGB − b1U

2k1)θ = −b1U
2k1Θ ,

(a21U − b2U
2k2)w + (a23zGB − b2U

2k1)θ = −b2U
2k1Θ .

This system of linear equations can be solved for the steady state values of w and θ. Using
the gains that correspond to the −0.3 poles design, we find

θ = 0.6679Θ ,

which agrees with the simulation results exactly. It seems, therefore, that the above control
law can guarantee stability but it needs something extra to ensure steady state accuracy, in
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Figure 22: Submarine response in the absence of feedforward control (solid curve) and in-
cluding feedforward control (dotted curve)
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other words we need to add (or subtract) a little more plane action to bring θ up to Θ. We
might be motivated then to use a control law of the form

δ = −k1(θ −Θ)− k2w − k3q − k0 ,

where the feedback gains k1, k2, k3 remain the same as before, and k0 is an unknown gain
which is computed such that at steady state we get the desired result θ = Θ. Therefore, at
steady state we have

a11Uw + b1U
2δ = −a13zGBΘ ,

a21Uw + b2U
2δ = −a23zGBΘ .

The solution is
w ≈ 0 , and δ = −0.4202Θ .

Substituting into the steady state dive plane angle we get

δ = −k1(θ −Θ)− k2w − k0 ,

or
k0 = 0.4202Θ .

This extra gain 0.4202 which multiplies the desired value Θ is called a feedforward gain. By
incorporating this in the previous control law, we achieve the desired steady state accuracy
as shown in the results of Figure 22 with the dotted curve. It seems then that when a
non–zero set point is commanded we can still use the same control law we developed before
but augmented with an extra term to ensure that the commanded set point is achieved.
The formalism of this result, along with the disturbance rejection, occupies the rest of this
section.

4.1 Feedforward Control

So far we have considered the design of regulators in which the performance objective has
been to achieve a specified closed loop dynamic behavior (i.e., pole locations) of the system
in response to arbitrary initial disturbances. A more general design objective is to control
the system error not only for initial disturbances, but also for persistent disturbances, and
also to track reference inputs.

Say our system is
ẋ = Ax + Bu + Fxd ,

where x is the n× 1 state vector, u is the m× 1 control vector, and xd is a d× 1 disturbance
vector. To make things even more interesting suppose that we want to track a reference input
xr in the presence of the disturbances xd, where the reference input has its own dynamics

ẋr = Arxr .
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We are concerned here with the error

e = x− xr ,

between the actual state x and the reference state xr. What we need then is a differencial
equation in e,

ė = ẋ− ẋr

= A(e + xr) + Bu + Fxd − Arxr

= Ae + (A− Ar)xr + Fxd + Bu

= Ae + Bu + Ex0 ,

where we have denoted

x0 =

[
xr

xd

]
,

a (n + d)× 1 vector containing both the reference inputs and the disturbances, and

E =
[

A− Ar F
]

,

a (n + d)× n augmented matrix.

Consider a control law of the form

u = −Ke−K0x0 .

Then the error dynamics becomes

ė = Ae + Ex0 − B(Ke−K0x0) .

If it were possible it would be desirable to choose the gains K and K0 to keep the system
error e at zero. As we will see shortly though, this is not always possible. More reasonable
performance objectives would be the following:

1. The closed loop system should be asymptotically stable.

2. A linear combination of the error state variables (rather than the entire state vector)
is to be zero at steady state.

The first objective is met by placing the poles of (A − BK) in the left half s–plane. At
steady state we have

ė = 0 ,

which gives
(A−BK)e = (BK0 − E)x0 ,

and the steady state error is

e = (A−BK)−1(BK0 −E)x0 .
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Now B is n ×m, K0 is m × (n + d), and E is (n + d) × n. We see, therefore, that only if
we have as many inputs as there are states n = m we can choose K0 = B−1E to make e
zero at steady state. In practice we have m < n which means that we cannot make e = 0.
Therefore, in general we can only require that some desired output yd is zero at steady state,

yd = Cde = 0 ,

where Cd is a m× n matrix, so the number of inputs m is the same as the dimension of yd.
Then we can require

Cd(A−BK)−1(BK0 −E)x0 = 0 ,

for all x0, or
Cd(A− BK)−1(BK0 − E) = 0 ,

or
Cd(A− BK)−1BK0 = Cd(A− BK)−1E .

Now we see that
Cd︸︷︷︸

m×n

(A− BK)−1︸ ︷︷ ︸
n×n

B︸︷︷︸
n×m

is m×m and can be inverted. Therefore, we can choose

K0 =
[
Cd(A− BK)−1B

]−1
Cd(A− BK)−1E ,

and the steady state requirement yd = 0 has been achieved.

Example: Let’s illustrate the procedure with the submarine example. Suppose our objective
is to keep constant depth z in the presence of two external disturbances f1, f2 (arising, say,
from near surface effects at periscope depth). The linearized equations of motion, including
the disturbance effects, are

θ̇ = q ,

ẇ = a11Uw + a12Uq + a13zGBθ + b1U
2δ + f1 ,

q̇ = a21Uw + a22Uq + a23zGBθ + b2U
2δ + f2 ,

ż = −Uθ + w ,

or, in matrix form,
θ̇
ẇ
q̇
ż


︸ ︷︷ ︸

ẋ

=


0 0 1 0

a13zGB a11U a12U 0
a23zGB a21U a22U 0
−U 1 0 0


︸ ︷︷ ︸

A


θ
w
q
z


︸ ︷︷ ︸

x

+


0

b1U
2

b2U
2

0


︸ ︷︷ ︸

B

δ︸︷︷︸
u

+


0 0
1 0
0 1
0 0


︸ ︷︷ ︸

F

[
f1

f2

]
︸ ︷︷ ︸

xd

.

The objective is to keep depth z = 0 in the presence of f1, f2. The first thing we have to do
is to stabilize the system by placing the poles of (A − BK). We do this by using a control
law of the form

δ = −k1θ − k2w − k3q − k4z .
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Figure 23: Submarine response: (1: in the absence of external disturbances); (2: with exter-
nal disturbances and no feedforward control); (3: with external disturbances and including
feedforward control)
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Selection of poles at −0.3, −0.31, −0.32, −0.33 produces a stable system whose response in
the absence of external disturbances is shown in Figure 23 (curve 1).

Use of the above feedback control law when f1 �= 0, f2 �= 0 produces stable response but
with a nonzero steady state error, as expected; see curve 2 in the figure, with f1 = 0.005 and
f2 = −0.01. In order to achieve the desired depth we introduce a general feedforward term
in the control law

δ = −k1θ − k2w − k3q − k4z − k0 ,

where the feedback gains k1, k2, k3, k4 remain the same as before, and the feedforward gain
k0 will be determined such that z = 0 at steady state. At steady state we get q = 0 from
the θ̇ equation and w = Uθ from ż = 0. The steady state control law becomes

δ = −k1θ − k2Uθ − k0 ,

where we have imposed the requirement z = 0. The ẇ and q̇ equations yield

a11U
2θ + a13zGBθ + b1U

2δ + f1 = 0 ,

a21U
2θ + a23zGBθ + b2U

2δ + f2 = 0 ,

or, if we substitute in the expression for δ,

(a11U
2 + a13zGB − b1U

2k1 − b1U
3k2)θ − b1U

2k0 = −f1 ,

(a21U
2 + a23zGB − b2U

2k1 − b2U
3k2)θ − b2U

2k0 = −f2 .

Substituting in numerical values we can find

k0 = 1.4312f1 − 11.1353f2 ,

and we can write then the complete control law as

δ = 3.0673θ + 1.1668w + 2.7562q − 0.0835z − 1.4312f1 + 11.1353f2 ,

where the feedback gains correspond to the −0.3 pole selection as we mentioned before. If
we simulate the system using this control law we see that the response gets to its desired
value in the presence of nonzero f1 and f2 (curve 3). We should comment here that from
the above two equations which were used to compute k0 we can see that, in general, we
get a nonzero pitch angle θ at steady state. This, similar to the set–and–drift in currents,
demonstrates that in the presence of disturbances it is in general impossible to keep all the
state variables of a system to their desirable values.

We can get the same result by applying the general formula derived in this section. We
have

δ = −Ke−K0x0

= −k1(θ − θr)− k2(w − wr)− k3(q − qr)− k4(z − zr)

−k01θr − k02wr − k03qr − k04zr − k05f1 − k06f2 ,
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where the subscript r indicates the reference input states, which are zero in our case. The
general equation for K0 is

K0 =
[
Cd(A− BK)−1B

]−1
Cd(A− BK)−1E .

The above matrices are (verify the calculations)

A =


0 0 1 0

0.0135 −0.3220 −0.7102 0
−0.0360 0.1260 −0.7395 0
−5 1 0 0

 , B =


0

0.0322
−0.0857

0

 ,

E =


0 0 1 0 0 0

0.0135 −0.3220 −0.7102 0 1 0
−0.0360 0.1260 −0.7395 0 0 1
−5 1 0 0 0 0

 , Cd =
[

0 0 0 1
]

,

K =
[

k1 k2 k3 k4

]
=

[
−3.0673 −1.1668 −2.7562 0.0835

]
.

Using these we find

K0 =
[

k01 k02 k03 k04 k05 k06

]
=

[
−3.0673 −1.1668 −2.7562 0 1.4312 −11.1353

]
,

and substituting into the expression for δ we get

δ = 3.0673θ + 1.1668w + 2.7562q − 0.0835(z − zr)− 1.4312f1 + 11.1353f2 ,

the same control law as before.

4.2 Disturbance Estimation

Recall that the previous procedure was given a system with reference input xr and distur-
bance xd,

ẋ = Ax + Bu + Fxd ,

ẋr = Arxr ,

we form the error
e = x− xr ,

and the equation for the error dynamics

ė = Ae + Bu + Ex0 ,

with

x0 =

[
xr

xd

]
, E =

[
A− Ar F

]
.
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The control law was
u = −Ke−K0x0 ,

where K is computed from stability requirements by pole–placing (A − BK), and K0 is
computed from the steady state accuracy requirement

yd = Cde = 0 at steady state ,

by computing

K0 =
[
Cd(A− BK)−1B

]−1
Cd(A− BK)−1E .

The above process requires knowledge of x0, which contains both the reference input xr and
the disturbances xd. If direct measurement of x0 is not possible (usually we know what the
reference input xr is but we cannot measure the disturbance xd), estimation of x0 is necessary.
In order to estimate x0 we need to assume a “model” for the disturbance, ẋd = Adxd; i.e.,
whether the disturbances are fairly constant, oscillatory, and so on. The complete system is
then

ẋ = Ax + Bu + Fxd ,

ẋd = Adxd ,

ẋr = Arxr .

Define a new augmented state vector

x =

[
e
x0

]
.

The new system is then written as

ẋ = A · x + Bu ,

where

A =

[
A E
0 A0

]
, A0 =

[
Ar 0
0 Ad

]
, B =

[
B
0

]
.

We assume that the observation (measurement) vector y depends on both the error e and
the vector x0,

y = Ce + Dx0 = C · x , C =
[

C D
]

.

We can apply now the general observer equation to the new augmented system x,

˙̂x = A · x + Bu + L(y − C · x) ,

where L is computed by pole–placement of (A−L·C) as before. This procedure will produce a
full order estimator for the augmented system, assuming of course that the augmented system
is observable. In the same way we can design a reduced order estimator for the augmented
system to estimate those states and disturbances that are not directly measurable. The key
for the above procedure is to treat the disturbances as extra states; although we cannot
control a disturbance we can estimate it by observing its effects on the system.
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Figure 24: Block diagram for disturbance estimation

Separating the above full order observer equation into equations for the system error
estimate ê and the error in estimating x0, we get

˙̂e = Aê + Bu + Ex̂0 + Le(y − Cê−Dx̂0) ,
˙̂x0 = A0x̂0 + L0(y − Cê−Dx̂0) .

The block diagram is presented in Figure 24. We can see from this block diagram that if x0

is constant (A0 = 0) and D = 0, then there are integrators in parallel to the path through
Le. This means that in the detrmination of ê there exists a path proportional to the integral
of the residual r = y − Cê in addition to the path through Le which is proportional to the
residual itself. Because of this integral path it is possible for r to become zero without x̂0

going to zero. Therefore, we can produce a nonzero control signal u, even when the system
error is zero. In classical control system design this is achieved by means of control action;
here it is achieved automatically by using an observer to estimate the unmeasurable x0.

With the above estimates ê and x̂0, the control law for the compensator is

u = −Kê−K0x̂0 .

We refer to this technique as the disturbance estimation and compensation method.

Example: Consider the control law of the previous example. In general, the disturbance
forces f1, f2 are unknown, so we have to use

δ = 3.0673θ̂ + 1.1668ŵ + 2.7562q̂ − 0.0835ẑ − 1.4312f̂1 + 11.1353f̂2 .
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In order to estimate f1 and f2 we first have to assume their dynamics. This is based on fairly
general physical considerations. In our case, since both f1 and f2 are assumed to model free
surface suction effects we can assume them to be relatively constant; i.e., ḟ1 = ḟ2 = 0. The
equations of motion then are

θ̇ = q ,

ẇ = a11Uw + a12Uq + a13zGBθ + b1U
2δ + f1 ,

q̇ = a21Uw + a22Uq + a23zGBθ + b2U
2δ + f2 ,

ż = −Uθ + w ,

together with

ḟ1 = 0 ,

ḟ2 = 0 .

In matrix form the augmented system becomes

θ̇
ẇ
q̇
ż

ḟ1

ḟ2


︸ ︷︷ ︸

ẋ

=



0 0 1 0 0 0
a13zGB a11U a12U 0 1 0
a23zGB a21U a22U 0 0 1
−U 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


︸ ︷︷ ︸

A



θ
w
q
z
f1

f2


︸ ︷︷ ︸

x

+



0
b1U

2

b2U
2

0
0
0


δ .

Let’s assume that z, θ, q are measurable (remember from Section 1.7 that we have to measure
z); can we estimate w, f1, and f2? The measurement equation is

 θ
q
z


︸ ︷︷ ︸

y

=

 1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0


︸ ︷︷ ︸

C



θ
w
q
z
f1

f2


︸ ︷︷ ︸

x

.

Using MATLAB we can see that the system is observable (the rank of the (A, C) observability
matrix is 6), so we should be able to estimate all states. Selecting observer poles at −0.6,
−0.61, −0.62, −0.63, −0.64, and −0.65, we can get the (full) observer matrix

L = [�ij ] =



0.6234 1.0000 0.0000
13.3973 −0.6743 0.6681
1.6255 0.5153 0.0378
9.4327 0.0377 1.5498
5.6251 0.0153 0.2424
−0.0990 0.3905 −0.0492


.
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Figure 25: Depth response with disturbance estimation and compensation

The observer equations are then

˙̂x = Ax̂ + Bu + L(y − Cx̂) ,

or

˙̂
θ = q̂ + �11(θ − θ̂) + �12(q − q̂) + �13(z − ẑ) ,
˙̂w = a11Uŵ + a12Uq̂ + a13zGB θ̂ + f̂1 + b1U

2δ + �21(θ − θ̂) + �22(q − q̂) + �23(z − ẑ) ,
˙̂q = a21Uŵ + a22Uq̂ + a23zGB θ̂ + f̂2 + b2U

2δ + �31(θ − θ̂) + �32(q − q̂) + �33(z − ẑ) ,
˙̂z = −Uθ̂ + ŵ + �41(θ − θ̂) + �42(q − q̂) + �43(z − ẑ) ,

˙̂
f1 = �51(θ − θ̂) + �52(q − q̂) + �53(z − ẑ) ,
˙̂
f2 = �61(θ − θ̂) + �62(q − q̂) + �63(z − ẑ) .

Simulation results in terms of z, f̂1/f1, and f̂2/f2 versus t are presented in Figures 25 and
26.

We can see that the response goes to zero, as it should. The initial condition for ẑ was
the same as for z, this is fair since z is measurable. The initial conditions for f̂1 and f̂2 were
both zero, we have no knowledge of free surface effect forces and moments, and we can see
that they converge to the actual values of f1, f2 quickly.
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Figure 26: Estimation of unknown disturbances
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4.3 Integral Control

The disturbance estimation and compensation technique will work well if we can have a fairly
good idea of what kind of disturbances will affect the system. In our submarine example it
may not be very hard to guess some kind of external forces and moments, but this is not
always so easy. In order to produce good performance with a nonzero set point (reference
input) and steady disturbances we need to introduce some sort of integral control behavior.
It should be pointed out that integral control is an alternative to the disturbance estimation
and compensation technique of the previous section, in fact the two methods are very closely
related. Both techniques achieve the same thing, zero steady state error, and both have their
advantages and disadvantages.

A typical state variable feedback control law feeds back the coordinates and their deriv-
atives. From Newton’s law we obtain second order ordinary differential equations for our
systems and we often use the positions and velocities as the states. The state variable feed-
back thus produces a proportional–plus–derivative (PD) type of feedback. Suppose that we
are primarily interested in some desired output

z = Dx ,

where z is m × 1. It is for this output z that we want to maintain a desirable value in the
presence of disturbances. If the desired value of z is zd one way to introduce integral control
characteristics is to introduce new state variables; i.e., augment the state vector,

v̇ = Dx− zd .

Feedback of v then will produce an integral of the error z − zd.

More specifically in the zd = 0 case,

ẋ = Ax + Bu .

The new state variable is
v̇ = z = Dx ,

or
v =

∫
z dt .

The augmented system is [
ẋ
v̇

]
=

[
A 0
D 0

] [
x
v

]
+

[
B
0

]
u .

The control law is obtained by pole–placement of this system

u = −
[

K0 KI

] [ x
v

]
,
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Figure 27: Response of integral control

or

u = −K0x−KIv

= −K0x︸ ︷︷ ︸
PD action

−KI

∫
z dt︸ ︷︷ ︸

Integral action

,

so this is a generalized PID–control.

Example: Consider the submarine equations of motion

θ̇ = q ,

ẇ = a11Uw + a12Uq + a13zGBθ + b1U
2δ + f1 ,

q̇ = a21Uw + a22Uq + a23zGBθ + b2U
2δ + f2 ,

ż = −Uθ + w .

If we want to maintain depth z at its desired value z = 0 we introduce a new state equation

żI = z ,
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where zI denotes the integral of z. We can see that steady state accuracy (z = 0) is
automatically ensured. The augmented system is now

θ̇
ẇ
q̇
ż
żI


︸ ︷︷ ︸

ẋ

=


0 0 1 0 0

a13zGB a11U a12U 0 0
a23zGB a21U a22U 0 0
−U 1 0 0 0
0 0 0 1 0


︸ ︷︷ ︸

A


θ
w
q
z
zI


︸ ︷︷ ︸

x

+


0

b1U
2

b2U
2

0
0


︸ ︷︷ ︸

B

δ︸︷︷︸
u

.

We select the closed loop controller poles at −0.30, −0.31, −0.32, −0.33 — same as before
— with the fifth pole corresponding to zI at −0.10. The reason for this is that we want the
integrator to correct the error only at steady state, while we would like to maintain the same
transient response. As a result, the integrator must be relatively slow compared to the other
poles of the system. The control law is

δ = 4.0647θ + 1.0237w + 3.8698q − 0.1533z − 0.0084zI .

Results are shown in Figure 27 for the same values of the disturbances f1, f2 as before. We can
see that z approaches zero, as it should. The main advantage of the integral control technique
is that the desired response will approach its commanded value regardless of the exact type
of disturbances. Also, no disturbance estimation is necessary. The main disadvantage is that
the integral control response tends to be oscillatory especially if no disturbances are acting.
In contrast, the response using the disturbance estimation and compensation technique is,
in general, much smoother.
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5 LYAPUNOV STABILITY

The concept of stability according to Lyapunov has found many applications in control
systems; in fact the whole theory of dynamical systems is based, to a great extent, on
Lyapunov’s methods.

5.1 Lyapunov Functions

Consider the nonlinear system
ẋ = f(x) .

Let an equilibrium point of the system be x,

f(x) = 0 .

We say that x is stable in the sense of Lyapunov if there exists a positive quantity ε such
that for every δ = δ(ε) we have

|x(t0)− x| < δ =⇒ |x(t)− x| < ε ,

for all t > t0. We say that x is asymptotically stable if it is stable and,

|x(t)− x| → 0 as t→∞ .

We cal x unstable if it is not stable.

The question, of course, is: How do we determine stability or instability of x? Lyapunov
introduced two main methods:

The first is called Lyapunov’s first or indirect method: we have already seen it as the
linearization technique. Start with a nonlinear system

ẋ = f(x) .

Expand in Taylor series around x (we also redefine x→ x− x),

ẋ = Ax + g(x) ,

where

A =
∂f

∂x

∣∣∣∣∣
x

,

is the Jacobian matrix of f(x) evaluated at x, and g(x) contains the higher order terms; i.e.,

lim
|x|→0

|g(x)|
|x| = 0 .

Then, the nonlinear system ẋ = f(x) is asymptotically stable if and only if the linear system
ẋ = Ax is; i.e., if all eigenvalues of A have negative real parts. This method is very popular
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because it is easy to apply and it works well for most systems, all we need to do is to be able
to evaluate partial derivatives. One disadvantage of the method is that if some eigenvalues of
A are zero and the rest have negative real parts, then we cannot draw any conclusions on the
nonlinear system, the equilibrium x can be either stable or unstable. The major drawback of
the method, however, is that since it involves linearization it is applied for situations when
the initial conditions are “close” to the equilibrium x. The method provides no indication
as to how close is “close”, this is something which may be extremely important in practical
applications.

The second method is Lyapunov’s second or direct method: this is a generalization of
Lagrange’s concept of stability of minimum potential energy. Consider the nonlinear system
ẋ = f(x). Suppose that there exists a function, called Lyapunov function, V (x) with the
following properties:

1. V (x) = 0.

2. V (x) > 0, for x �= x.

3. V̇ (x) < 0 along trajectories of ẋ = f(x).

Then, x is asymptotically stable. We can see that the method hinges on the existence of a
Lyapunov function, which is an energy–like function, zero at equilibrium, positive definite
everywhere else, and continuously decreasing as we approach the equilibrium. It should be
noted that the derivative V̇ (x) is understood as the total differential along solution curves
of ẋ = f(x); i.e.,

V̇ (x) =
∂V

∂x
· dx

dt

=
∂V

∂x
f(x)

=
∂V

∂x1
f1 +

∂V

∂x2
x2 + · · ·+ ∂V

∂xn
fn .

The method is very powerful and it has several advantages:

• answers questions of stability of nonlinear systems,

• can easily handle time varying systems ẋ = f(x, t),

• can determine asymptotic stability as well as plain stability,

• can determine the region of asymptotic stability or the domain of attraction of an
equilibrium.

As an example, consider an oscillator with a nonlinear spring:

ÿ + 3ẏ + y3 = 0 .
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If we were to linearize this system we would get ÿ+3ẏ = 0, which has characteristic equation
s(s + 3) = 0. The −3 characteristic root corresponds to the damping term but notice the
existence of a 0 root from the lack of a linear term in the spring restoring force. The linearized
version of the system cannot recognize the existence of a nonlinear spring term and it fails to
produce a non–zero characteristic root related to the restoring force. To see if this nonlinear
spring produces a stable or unstable system we have to resort to Lyapunov functions. The
state space form of the system is

ẋ1 = x2 ,

ẋ2 = −3x2 − x3
1 ,

with equilibrium x1 = x2 = 0. Let’s try for a Lyapunov function

V (x) =
1

2
x2

2 +
1

4
x4

1 .

We can see that V (x) > 0 for all x1, x2. The time derivative of V is

V̇ (x) =
∂V

∂x1
ẋ1 +

∂V

∂x2
ẋ2

= x3
1x2 + x2(−3x2 − x3

1)

= −3x2
2

< 0 .

It follows then that x is asymptotically stable.

The main drawback of the method is that there is no systematic way of obtaining Lya-
punov functions, this is more of an art than science. For simple second order systems (like
the one above) a good selection for a Lyapunov function is the total energy of the system
(kinetic plus potential energy). Also, it is always possible to find a Lyapunov function for a
linear system in the form

ẋ = Ax .

Choose as Lyapunov function the quadratic form

V (x) = xT Px ,

where P is a symmetric positive definite matrix. Then we have

V̇ = ẋT Px + xT P ẋ

= (Ax)T Px + xT PAx

= xT AT Px + xT PAx

= xT (AT P + PA)x

= −xT Qx ,

where we have denoted
AT P + PA = −Q .
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If the matrix Q is positive definite, then the system is asymptotically stable. Therefore, we
could pick Q = I, the identity matrix, and solve

AT P + PA = −I ,

for P and see if P is positive definite (we can do this by looking at the n principal minors
of P — Sylvester’s criterion). The equation

AT P + PA = −Q ,

is called Lyapunov’s matrix equation and its solution is easy through MATLAB by using
the command lyap. Of course one could argue that having an equation to determine a
Lyapunov function for linear systems is useless; after all for a linear system we can always
look at the eigenvalues of A to determine stability or instability. This is true, the usefulness
of Lyapunov’s matrix equation for linear systems is that it can provide an initial estimate
for a Lyapunov function for a nonlinear system in cases where this is done computationally.
Furthermore, it can be used to show stability, as we will see in the next section, of the linear
quadratic regulator design.

5.2 Examples

We present three examples here that demonstrate three important applications of Lyapunov’s
method, namely

1. How to assess the importance of nonlinear terms in stability or instability.

2. How to estimate the domain of attraction of an equilibrium point.

3. How to design a control law that guarantees global asymptotic stability; i.e., with
infinitely large domain of attraction, for a nonlinear system.

All of the above problems are very difficult, in general, and we shouldn’t think that we can
easily generalize the relatively simple examples we present here.

As our first example, suppose we have the system

ẋ1 = −x2 + ax1x
2
2 ,

ẋ2 = +x1 − bx2
1x2 ,

with a �= b. To find the equilibrium of the system we have to solve

−x2 + ax1x
2
2 = 0 ,

+x1 − bx2
1x2 = 0 .

Multiplying the first equation by x1, the second by x2 and adding we get

x2
1x

2
2(a− b) = 0 ,
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from which x1 = 0 or x2 = 0. If x1 = 0 then we see from the first equation that x2 = 0
as well, and similarly if we assume that x2 = 0. Therefore, the unique equilibrium of the
system is x1 = x2 = 0. The linearized system is[

ẋ1

ẋ2

]
=

[
0 −1
1 0

] [
x1

x2

]
.

The characteristic equation is

det

∣∣∣∣∣ −s −1
1 −s

∣∣∣∣∣ = 0 =⇒ s2 + 1 = 0 =⇒ s = ±ωi .

Since the characteristic roots are purely imaginary, we cannot draw any conclusion on the
stability of the nonlinear system. We have to resort to Lyapunov functions. Let’s try for
V (x) the sum of the “kinetic” and “potential” energy of the linear system (this doesn’t
always work of course), we get

V (x) =
1

2
x2

1 +
1

2
x2

2 .

We see that V (x) > 0 for all x1, x2. Then

V̇ (x) = x1(−x2 + ax1x
2
2) + x2(x1 − bx2

1x2)

= −x1x2 + ax2
1x

2
2 + x1x2 − bx2

1x
2
2

= (a− b)x2
1x

2
2 .

Therefore, we see that

if a < b =⇒ the system is asymptotically stable ,

if a > b =⇒ the system is unstable ,

a result which could not have been obtained by linearization.

As our second example, suppose we want to determine the stability of the origin (0, 0)
of the nonlinear system (show that this is the equilibrium of the system),

ẋ1 = −x1 + x2 + x1(x
2
1 + x2

2) ,

ẋ2 = −x1 − x2 + x2(x
2
1 + x2

2) .

The easiest way to show stability is by linearization. The linearized form of the system is[
ẋ1

ẋ2

]
=

[ −1 1
−1 −1

] [
x1

x2

]
.

The characteristic equation of the system is

s2 + 2s + 2 = 0 ,

and we can see that the system is stable, the roots of the characteristic equation have negative
real parts. Now since this result is based on linearization, it says that if the initial condition
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is “close” to the equilibrium point (0, 0) then the solution will tend to the equilibrium as
t→∞. To find how close is “close” we need to get an estimate of the domain of attraction.
We can do this by using Lyapunov theory. Let’s try a Lyapunov function candidate

V (x) =
1

2
x2

1 +
1

2
x2

2 .

Form

V̇ (x) = x1ẋ1 + x2ẋ2

= x1(−x1 + x2 + x3
1 + x1x

2
2) + x2(−x1 − x2 + x2x

2
1 + x3

2)

= −x2
1 + x1x2 + x4

1 + x2
1x

2
2 − x1x2 − x2

2 + x2
2x

2
1 + x4

2

= x4
1 + x4

2 + 2x2
1x

2
2 − x2

1 − x2
2

= (x2
1 + x2

2)
2 − (x2

1 + x2
2)

= (x2
1 + x2

2)(x
2
1 + x2

2 − 1) .

We can see, therefore, that stability is guaranteed if

V̇ (x) < 0 or x2
1 + x2

2 < 1 ,

which means that the domain of attraction of the equilibrium is a circular disk of radius 1.
As long as the initial conditions are inside this disk, it is guaranteed that the solution will
end up at the stable equilibrium. In case where the initial conditions lie outside the disk then
convergence is not guaranteed. It should be mentioned that the above disk is an estimate of
the domain of attraction based on the particular Lyapunov function we selected. A different
Lyapunov function could heve produced a different estimate of the domain of attraction.

As our third example, consider the motion of a space vehicle about the principal axes
of inertia. The Euler equations are

Aω̇x − (B − C)ωyωz = Tx ,

Bω̇y − (C − A)ωzωx = Ty ,

Cω̇z − (A− B)ωxωy = Tz ,

where A, B, and C denote the moments of inertia about the principal axes, ωx, ωy, and ωz

denote the angular velocities about the principal axes; and Tx, Ty, Tz are the control torques.
Assume that the space vehicle is tumbling in orbit. It is desired to stop the tumbling by
applying control torques which are assumed to be

Tx = k1Aωx ,

Ty = k2Bωy ,

Tz = k3Cωz ,

where k1, k2, k3 are the feedback gains. The unique equilibrium of the system is ωx = ωy =
ωz = 0. If we substitute the equations for the control torques we get the closed loop system

ω̇x =
B − C

A
ωyωz + k1ωx ,
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ω̇y =
C − A

B
ωzωx + k2ωy ,

ω̇z =
A− B

C
ωxωy + k3ωz .

If we linearize the system around its equilibrium we have ω̇x

ω̇y

ω̇z

 =

 k1 0 0
0 k2 0
0 0 k3


 ωx

ωy

ωz

 .

We can see that the eigenvalues of the closed loop matrix are the same as the feedback gains
k1, k2, k3. Therefore, for stability we want negative poles and, as a result, we select negative
gains k1, k2, k3 for the three control torques. So far we have used linear methods. What we
are really interested though is the following: will the above gain selection guarantee globally
stable operation of the system? In other words, will our control law be able to stop the
vehicle tumbling for any set of initial conditions? To see this we have to resort to Lyapunov
methods. Choose as our Lyapunov function

V (ω) =
1

2
Aω2

x +
1

2
Bω2

y +
1

2
Cω2

z ,

which is the total kinetic energy of the vehicle. We see that V is positive definite, and its
time derivative is

V̇ (ω) = k1Aω2
x + k2Bω2

y + k3Cω2
z ,

which is always negative if the gains are selected negative. Therefore, the above gain selection
guarantees stability of the nonlinear system regardless of the initial conditions.

5.3 Sliding Mode Control

As an application of Lyapunov method, consider a single input system linear in the control
effort

ẋ = f(x) + g(x)u ,

where f(x), g(x) are, in general, nonlinear functions in x. We want to design u such that
we guarantee stability of x = 0.

Choose the Lyapunov function

V (x) =
1

2
[σ(x)]2 ,

where
σ(x) = sT x .

The scalar function σ(x) can be viewed as a weighted sum of the errors in the states x. For
stability, we want the time derivative of V (x) to be negative,

V̇ (x) = σσ̇ < 0 ,
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which can be achieved if
σσ̇ = −η2|σ| ,

which means that
σ̇ = −η2sign(σ) ,

where

sign(σ) =

{
1 if σ > 0 ,
−1 if σ < 0 .

Using σ(x) = sT x, we get

σ̇ = sT ẋ = sT f(x) + sT g(x)u = −η2sign(σ) ,

and solving for u we get the control law

u = −
[
sT g(x)

]−1
sT f(x)−

[
sT g(x)

]−1
η2sign(σ) .

We can see that this control law is the sum of two terms. The first term is a nonlinear state
feedback, and the second term is a switching control law. The term η2 is an arbitrary positive
quantity, we usually select it such that V̇ is negative even in the presence of modeling errors
and disturbances.

The above control law guarantees stability of σ(x) = 0, or sT x = 0. We need to find s
such that stability of x = 0 is guaranteed. If σ(x) = 0, the system becomes

u = −
[
sT g(x)

]−1
sT f(x) ,

and
ẋ = f(x)− g(x)

[
sT g(x)

]−1
sT f(x) .

If we linearize this system,

A =
∂f

∂x

∣∣∣∣∣
0

, b = g(0) ,

we get a linear system
ẋ = Ax + bu .

Then, on σ(x) = 0 we have

ẋ = Ax− b(sT b)−1sT Ax

=
[
A− b(sT b)−1sT A

]
x .

The closed loop dynamics matrix is

AC = A− b (sT b)−1sT A︸ ︷︷ ︸
k

= A− bk .

Then
k = (sT b)−1sT A =⇒ sT bk = sT A =⇒ sT A− sT bk = 0 ,

or
sT (A− bk) = 0 =⇒ (A− bk)T s = 0 =⇒ AT

Cs = 0 =⇒ (AT
C − 0 · I) = 0 .

We see then that s is the eigenvector of AT
C that corresponds to the zero eigenvalue. The

design procedure, therefore, can be summarized as follows:
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• Pole placement of A− bk, specify one eigenvalue to be zero and the rest negative. Find
k and therefore, find AC = A− bk.

• Find s from AT
Cs = 0. Set σ = sT x.

• Implement the control law

u = −
[
sT g(x)

]−1
sT f(x)−

[
sT g(x)

]−1
η2sign(σ) ,

if we have a nonlinear system, or

u = −(sT b)−1sT Ax− (sT b)−1η2sign(σ) ,

if we have a linear system.
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6 OPTIMAL CONTROL

So far we were concerned with control design where the objective was either to stabilize a
system (the regulator problem), or to track a reference input (the servomechanism problem).
We can do better than this though! In particular, what if we wanted to design the “best”
controller, where the word “best” is understood with respect to some measure of merit or
performance index? In classical control design we have already seen the use of integral
performance criteria (such as ITAE) in order to obtain desirable characteristic equations for
use in pole placement. Other criteria could lead to minimizing the travel time (minimal time
control), fuel consumption (minimal fuel control), miss distance (optimal randevouz), and
so on. These requirements lead to the design of optimal controllers.

6.1 Optimal Control Problems

In general terms, the problem is to find a control law u for the system ẋ = f(x, u) such that
a certain index J is minimized. Therefore, the basic problem of optimal control is

minimize J = K(x0, xf) +
∫ tf

t0
L(x, u) dt ,

under the constraint
ẋ = f(x, u) .

K, L are specified functions, and

x0(t0) : initial state (time)
xf(tf ) : final state (time)

}
given or free .

This formulation is general enough to allow for several interesting cases, for instance,

• K = 0, L = 1 =⇒ minimal time problem,

• K = 0, L = |u| =⇒ minimal fuel problem,

and so on.

Specifically, we have the following problem statement:

1. System equations ẋ = f(x, u, t) where x ∈ Rn is the state vector, and u ∈ Rm is the
controls vector.

2. Boundary conditions on the starting time, t0, initial state x0 = x(t0), final time tf ,
and final state xf = x(tf ). These may or may not be given, therefore we can have a
number of combinations fixed–free, free–free, free–fixed problems.
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3. Performance index

J = K(xf , tf) +
∫ tf

t0
L(x(t), u(t), t) dt .

A few special cases for this are:

• The Mayer problem,
J = K(xf , tf ) .

• The Lagrange problem,

J =
∫ tf

t0
L(x(t), u(t), t) dt .

• The Bolza problem, both K and L are non–zero.

4. Constraints can be either on control; i.e., |ui| ≤ 1 (very common), or on the state; i.e.,
G(xf , tf) = 0 (target sets), |xi| ≤ Xi (inequality constraints, very hard to handle in
general). These constraints determine a set of admissible control histories, U , and a
set of admissible state trajectories, X.

The general problem of optimal control can then be stated as:

Find u(·) ∈ U which takes the system from x0 at t0 to xf at tf by ẋ = f(x, u, t)
in such a way at to minimize J while x(·) ∈ X.

6.2 Examples

Some examples of optimal control problems are:

1. Time Optimal Control:
Consider J =

∫ tf
t0 dt where t0 is fixed and tf is free. We can have fixed end points or

belonging on target sets. Usually, we also need constraints on u to make the problem
well–posed. As a particular example consider ẍ = u, where |u| ≤ 1. Say we start from
initial conditions x0, ẋ0 both positive and we want to get to the origin xf = ẋf = 0, as
quickly as possible. We can see that since we initially have positive x and positive ẋ
we must apply full negative control u = −1 in order to get negative ẋ (i.e., towards the
origin) while x remains positive. Then at some instant we should switch to full positive
control u = +1 to stop at x = 0 with zero speed. The precise instant of switching from
u = −1 to u = +1 is, of course, not known for now. This is an example of a bang–bang
control problem, which most time optimal control problems lead to.

2. Fuel Optimal Control:
A typical example is,

J =
∫ tf

t0

m∑
i=1

|ui| dt .
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Typically, such problems lead to bang–bang controls and with tf free, the problem
may be ill posed for certain initial conditions — i.e., if no restrictions on tf are placed
minimum fuel could mean coast to the destination with very small speed.

3. Mimimum Integral Square Error:
Here,

J =
∫ tf

t0
xT x dt or J =

∫ tf

t0
xT Qxdt ,

where Q is a symmetric and positive definite matrix. Typically we need constraints
on u to prevent it from becoming infinitely large. In the special case of linear state
feedback, we get the familiar ISE criterion.

4. Mimimum Energy Problems:
Here,

J =
∫ tf

t0
uT Ru dt ,

where R is symmetric and positive definite.

5. Final Value Optimal Control:
Here, J = K(xf , tf), for example

J =
n∑

i=1

(xif − xi(tf))
2 .

Combinations of the above are, of course, also possible examples.

6.3 Calculus of Variations

A real function of a real variable is a map between a real number to another real number.
A map between a function to a real number is called a functional. The performance index
J is an example of a functional. Minimization of a functional is the subject of a branch of
mathematics, called calculus of variations. The simplest problem of the calculus of variations
is,

min J =
∫ tf

t0
L(x, ẋ, t) dt ,

where x is a scalar function, t0, x(t0), tf , x(tf ) are given, and all functions are smooth. It
should be mentioned here that t in the above equation is not necessarily time (although in
control problems it most likely is); t simply denotes the dependent variable. The function x
then which minimizes J satisfies the so–called Euler–Lagrange equations,

∂L

∂x
− d

dt

∂L

∂ẋ
= 0 ,

together with the boundary conditions x(t0) = x0, x(tf ) = xf .

The solutions to these equations are called the extremals. The equations are usually
referred to as Euler’s equations in calculus of variations textbooks and Lagrange’s equations

91



in dynamics, where L is called the Lagrangian and is the kinetic minus the potential energy
of a conservative system. Again in dynamics, the fact that the Lagrangian L is a stationary
value for J is called Hamilton’s principle.

The Euler–Lagrange (E–L) equations are in general 2nd order nonlinear differential equa-
tions, which means that we need two boundary conditions x(t0) = x0 and x(tf ) = xf to solve
them. Existence, however, is not guaranteed here. This is not a Cauchy initial value prob-
lem, it is called a two–point boundary value problem (more later) and can be rather difficult
to solve numerically.

Some particular cases of E–L are:

1. Suppose that L(x, ẋ, t) is independent of x (this is called an ignorable coordinate in
dynamics). Then, E–L results in

d

dt

∂L

∂ẋ
= 0 =⇒ ∂L

∂ẋ
= const.

which is the principle of conservation of conjugate momentum in dynamics.

2. Suppose we have a time invariant system and L(x, ẋ, t) is independent of t. Then,

∂L

∂x
− d

dt

∂L

∂ẋ
=

∂L

∂x
− ∂2L

∂x∂ẋ
ẋ− ∂2L

∂ẋ2
ẍ = 0 ,

or

ẋ
∂L

∂x
− ∂2L

∂x∂ẋ
ẋ2 − ∂2L

∂ẋ2
ẍẋ =

d

dt

[
L− ẋ

∂L

∂ẋ

]
= 0 .

This of course means that

L− ẋ
∂L

∂ẋ
= const. ,

which is the conservation of Hamiltonian.

3. If L(x, ẋ, t) is independent of ẋ, then E–L becomes simply ∂L
∂x

= 0.

6.4 Example: The Brachystochrone Problem

The brachystochrone problem is one of the oldest problems that in fact initiated efforts
towards calculus of variations. It can be simply stated as follows: Given a point O in a
vertical plane with coordinates (t0, x0) and another point also in the same vertical plane
with coordinates (tf , xf ) find the shape of a curve connecting the two points such that
a frictinless mass can start at O with zero speed and slide down in minimal time. The
geometry is shown in Figure 28. We should exercise caution here in that t is not time; x and
t are the two spatial coordinates of the problem.

To formulate the problem we use the kinetic energy mv2

2
and the potential energy −mgx.

Conservation of energy requires that mv2 − 2mgx = 0 from which v =
√

2gx. The elapsed

92



� �� � � ���	�	�
� �

�� � � �
� �

�

�




��



� ���������������

���

���� ������� ������ �� �� ������������ ������� ��� �� ���� ���

� �� ���� ��������

Figure 28: The brachystochrone problem
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time is,

dτ =
ds

v
=

√
dx2 + dt2√

2gx
=

√
1 + ẋ2

√
2gx

dt .

The total elapsed time to minimize is then given by,

T =
∫

dτ =
1√
2g

∫ tf

t0=0

√
1 + ẋ2

x
dt .

Since the Lagrangian

L(x, ẋ, t) =

√
1 + ẋ2

x
,

is independent of t, the E–L equations become

L− ẋ
∂L

∂ẋ
= const.⇒

√
1ẋ2

√
x
− ẋ2ẋ

2
√

x
√

1 + ẋ2
= C ⇒

1 + ẋ2 − ẋ2 = C
√

x(1 + ẋ2)⇒ x(1 + ẋ2) = C1 ⇒

tx =

√
C1 − x

x
⇒ dt =

√
x

C1 − x
dx .

If we let
x = C1 sin2 θ ,

we get
dx = 2C1 sin θ cos θ dθ ,

and
dt = 2C1 sin2 θ dθ = C1(1− cos 2θ) dθ .

Integrating,

t = C1

(
θ − sin 2θ

2

)
+ C2 .

Since x(θ = 0) = 0 and t(θ = 0) = 0 we get,

x =
C1

2
(1− cos 2θ) ,

t =
C1

2
(2θ − sin 2θ) .

Geometrically, these equations represent (parametrically) an arc of a cycloid generated by
rotating a circle of radius C1/2 by an angle 2θ. The two constants C1 and θ can be determined
by enforcing the remaining two boundary conditions,

x(θf ) = xf and t(θf ) = tf .

Some comments on the brachystochrone are:

94



1. Every sub–arc of a brachystochrone with appropriate boundary velocities is by itself a
brachystochrone. With regards to Figure 28, if A–B is a brachystochrone with vA = 0
and vB =

√
2ghB, then the brachystochrone between points C and D with velocities

vC =
√

2ghC and vD =
√

2ghD is precisely the arc C–D. This is called the Principle of
Optimality.

2. A brachystochrone remains optimal after time reversal.

3. The brachystochrone helps make “strange” results in optimal control look more plau-
sible, see Figure 28 for a couple of possible examples.

6.5 Optimality Conditions

We can use calculus of variations to derive the optimal control. We seek a function of time
u(t) to minimize J subject to the state equations ẋ = f(x, u). Ordinary calculus can be used
to solve for a parameter to minimize a scalar. Calculus of variations is used to solve for a
function to minimize a scalar J . This is similar to the previous E–L equations, except that
here we need to satisfy the state equations as well. The approach is directly parallel to the
Lagrange multiplier method for parameter optimization subject to a constraint.

The final result is as follows: In order to solve

min J = K(x0, xf) +
∫ tf

t0
L(x, u) dt ,

such that ẋ = f(x, u) ,

we define the Hamiltonian

H(x, p, u) = pT f(x, u)− L(x, u) ,

where x is the state vector, and p is an unknown vector (called the co–state vector). The
necessary conditions for optimality are the following sets of equations:

1. The state equations,

ẋ =
∂H

∂p
= f(x, u) .

2. The adjoint equations,

ṗ = −∂H

∂x
.

3. Maximization of Hamiltonian,
∂H

∂u
= 0 ,

which is known as Pontryagin’s maximum principle.

4. Boundary conditions,

δK +
[
pT δx−Hδt

]tf
t0

= 0 .
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Solution of these formidable equations yields the optimal control law u. This is a very difficult
task, and even when it is possible, usually the procedure yields an open loop control; i.e.,
u is obtained as a function of time rather than state. A special case where solution can be
obtained in closed loop form is the Linear Quadratic Regulator (LQR) problem.

6.6 The Linear Quadratic Regulator

Suppose we have a linear system,
ẋ = Ax + Bu ,

and a quadratic cost function,

J = 1
2
xT

f Fxf + 1
2

∫ tf

t0

[
xT Qx + uT Ru

]
dt ,

where x0, t0, tf are given (fixed) and xf is free to vary. This is the LQR problem: we seek a
control law u to minimize J . It should be emphasized that the above matrices A, B, Q, R
are assumed, in general, to be functions of time. This is our first attempt, so far, to design
a control law for a linear, time–varying system.

The weighting matrices F , Q, R are symmetric and positive definite and are at the
discretion of the designer. Q is the state weighting matrix, R penalizes the control effort,
and F penalizes the final state (or miss distance). Relatively small elements of Q compared
to R will result in a control law which will tolerate errors in x with low control effort u.
On the other hand, if Q is made large compared to R this will result in tight control; small
errors in the state with considerable control effort. We can also use different values of the
entries of Q (or R). For example, say the (2, 2) element of Q is large compared to the rest.
This will result in improved control of the state x2 at the expense of control accuracy of the
other states and more control effort.

In order to solve the LQR problem we apply the general equations of optimal control.
The Hamiltonian is

H(x, p, u) = pT (Ax + Bu)− 1
2
(xT Qx + uT Ru) ,

and the necessary conditions for optimality are

ẋ =
∂H

∂p
=⇒ ẋ = Ax + Bu ,

ṗ = −∂H

∂x
=⇒ ṗ = −AT p + Qx ,

∂H

∂u
= 0 =⇒ BT p− Ru = 0 =⇒ u = R−1BT p .

The boundary conditions are[
pT δx−Hδt

]tf
t0

+ δ
(

1
2
xT

f Fxf

)
= 0 ,
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or
pT (tf )δxf − pT (t0)δx0 −H(tf )δtf + H(t0)δt0 + xT

f Fδxf = 0 .

Since x0, t0, and tf are fixed we have

δx0 = δt0 = δtf = 0 ,

and the boundary condition becomes

pT (tf)δxf + xT
f Fδxf = 0⇒[

pT (tf ) + xT
f F

]
δxf = 0 .

Since xf is free, its variation δxf is arbitrary. Therefore, the quantity inside the square
brackets must vanish, and this produces the desired boundary condition in the form

p(tf ) = −Fx(tf ) .

In summary, the problem we have to solve is

ẋ = Ax + BR−1BT p ,

ṗ = Qx−AT p ,

x(t0) = x0 ,

p(tf) = −Fx(tf ) .

Solution of these ordinary differential equations will provide p(t) and this will allow calcula-
tion of u as a function of time from u = R−1BT p(t). However, solving these equations is not
as easy as it may seem. Notice that for a numerical integration of ẋ and ṗ we need to know
the initial conditions at t0; i.e., x(t0) and p(t0). But we know p(tf ) = −Fx(tf ) instead of
p(t0). This is called a two–point boundary value problem with half of the boundary condi-
tions at t0 and the other half at tf . Solution of two–point boundary value problems requires
iterative (shooting) techniques: assume an initial condition p(t0), integrate numerically the
system and at the end check whether the condition p(tf) = −Fx(tf ) is satisfied, if it is not
change the initial condition p(t0) and iterate until convergence. To make things worse, even
if we could easily solve this problem, still the optimal control u would be open loop, u(t)
instead of u(x).

Kalman’s idea comes here to the rescue: Let

p(t) = −S(t)x(t) ,

where S(t) is a symmetric positive definite matrix to be determined. Then we have

ṗ = −Ṡx− Sẋ

= −Ṡx− S
(
Ax + BR−1BT p

)
,

or

Qx− AT p = −Ṡx− SAx− SBR−1BT p⇒
Qx + AT Sx = −Ṡx− SAx + SBR−1BT Sx⇒
−Ṡx =

(
AT S + SA− SBR−1BT S + Q

)
x ,
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and since this must be true for all x we get

−Ṡ = AT S + SA− SBR−1BT S + Q ,

with
S(tf) = F .

This is called a Riccati matrix differential equation. Therefore, we can obtain S(t) by
backwards integration of the Riccati matrix differential equation, and then obtain the closed
loop optimal control law by

u = −R−1BT S(t)x ,

a linear state feedback with time varying gains.

For the case of constant A, B, Q, R matrices and tf → ∞, we have the steady state
problem Ṡ = 0. In this case the optimal closed loop control law is

u = −R−1BT Sx ,

where S is found by solving the algebraic Riccati equation (ARE) for the positive definite
S,

AT S + SA− SBR−1BT S + Q = 0 .

This is a nonlinear algebraic equation in the elements of S and it may admit multiple
solutions, only one of them is positive definite though, and this is the one that we seek. See
the lqr command for solution of the LQR problem using MATLAB.

Recall that previously we were using pole (eigenvalue) placement to produce arbitrary
closed–loop eigenvalues. Here we have a technique more suited for large, multivariable
systems in which we choose the weighting matrices Q and R. The mathematics then yields
a set of closed loop eigenvalues which are guaranteed to be stable (we will see why shortly)
but over which we have no direct control. If the closed loop eigenvalues are not acceptable,
it may be necessary to change the weighting matrices Q and R and iterate. If the errors
in the state xi are too large, it would be necessary to raise qii. If there is excessive use of
control uj, it would be necessary to raise rjj. This would cause the state or control with
the increased weighting in J to be reduced in the next design (iteration) at the expense of
increased errors in the other states and/or increased usage of the other controls.

How do we know that the LQR design yields a stable system though? We can show
stability by using Lyapunov’s method. Choose

V (x) = xT Sx ,

as a Lyapunov function candidate, where S is the positive definite solution of the Riccati
equation. Since S is a positive definite matrix, V (x) > 0. Its time derivative is

V̇ (x) = ẋSx + xT Ṡ + xT Sẋ

= (Ax + Bu)TSx + xT Ṡ + xT S(Ax + Bu)

= xT (Ṡ + AT S + SA− 2SBR−1BT S)x

= xT (−SBR−1BT S −Q)x

= −xT SBR−1BT Sx− xT Qx .
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Let z = R−1BT Sx be some vector, then

V̇ (x) = −zT Rz − xT Qx < 0 ,

since Q, R are positive definite matrices. Therefore, V (x) is a Lyapunov function for the
LQR design, and since

V (x) > 0 and

V̇ (x) < 0 ,

the design will always yield a stable system (as long as the Riccati equation supplies the
positive definite solution matrix S).

As an example, say we have ẋ = 2x+u, a scalar system. The open loop pole is s− 2 = 0
or s = 2, so it is unstable. We wish to control x near zero and minimize

J =
∫ ∞

0
(qx2 + ru2) dt .

Suppose we want to use q = 0.25 and r = 1. Then the ARE is 2k+2k−k·1·1−1·1·k+0.25 = 0,
or k2 − 4k − 0.25 = 0. The positive root is k = 4.06 and the optimal control is

u = −1−1 · 1 · 4.06x = −4.06x .

The closed loop eigenvalue is det(2−4.06−s) = 0 or s = −2.06, and the closed loop response
is x(t) = x(t0)e

−2.06t. If we wish to reduce the error in x faster at the expense of using more
control we can raise q. If we redesign for q = 4, r = 1 we get k = 4.83, u = −4.83x, and
x(t) = x(t0)e

−2.83t. If we wish to reduce the amount of control used at the expense of slower
response, we can raise r. If we redesign for q = 0.25 and r = 10, we get k = 40.06, u = −4x,
and x(t) = x(t0)e

−2t.

Example: Consider the submarine equations of motion

θ̇ = q ,

ẇ = a11Uw + a12Uq + a13zGBθ + b1U
2δ ,

q̇ = a21Uw + a22Uq + a23zGBθ + b2U
2δ ,

ż = −Uθ + w .

One common logic in selecting the weighting matrices Q and R in the performance index J
is to say that we are willing to use control uj0 when state error xi0 is reached. We can make
Q and R diagonal with

qii =
1

x2
i0

, i = 1, 2, . . . , n (n states) ,

rjj =
1

u2
j0

, j = 1, 2, . . . , m (m controls) .

In our case the performance index is, in general,

J =
∫

(q11θ
2 + q22w

2 + q33q
2 + q44z

2 + rδ2) dt .
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In this case we want to control θ and z near zero (their nominal values) and use a reasonable
amount of dive planes to do the job. We assume it would be reasonable to use 5o dive planes
for depth control when the pitch angle deviates 3o from zero or the boat reaches a depth
deviation of 1.5 feet (about one tenth of the length). We, therefore, assume all terms in Q
and R to be zero except,

q11 =
(

3

57.3

)−2

= 364.8 weighting on θ2 ,

q44 = (1.5)−2 = 0.444 weighting on z2 ,

r11 =
(

5

57.3

)−2

= 133.3 weighting on δ2 .

The performance index is

J =
∫ (

q11θ
2 + q44z

2 + r11δ
2
)

dt ,

and the control law then becomes

δ = −(−2.7570θ − 0.5457w − 2.7657q + 0.0577z) ,

and the closed loop poles are

−0.5207± 0.2841i and − 0.1197± 0.0704i .

A numerical simulation in terms of z and δ is shown in Figure 29 by the solid curves. If we
decide to use 5o dive planes for depth control when the pitch angle deviates 3o from zero or
the boat reaches a depth deviation 0.5 feet from zero, we expect a tighter control law: the
same dive plane angle is commanded for one third the error in z. In this case the control
law is

δ = −(−4.6187θ − 0.5177w − 4.5379q + 0.1732z) ,

and the closed loop poles are

−0.4901± 0.2819i and − 0.2267± 0.1111i .

The dominant pole is more negative in this case, as it should. The results of this simulation
are also shown in Figure 29 with the dotted curves, the response is faster at the expense of
more plane activity.

Other performance indices are also possible. Suppose the objective is to keep the subma-
rine at constant depth, z = 0, while minimizing the added drag due to dive plane activity.
The design is then for a depth controller which will minimize the added drag on the boat due
to its deviations from the equilibrium (nominal) level flight path x = [θ, w, q, z]T = [0, 0, 0, 0]T

and control δ = 0. To formulate the problem we need the longitudinal (surge) equation of
motion, which is (see ME 4823 for details)

(m−Xu̇)u̇ = Xqqq
2 + (Xwq −m)wq + Xwww2 + XUUU2 + Xδδδ

2 + Tprop ,
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Figure 29: LQR simulation for a slow (solid) and a tight control (dotted) law
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where XUU represents the drag coefficient in straight line motion, Tprop is the propulsive
force, and the terms Xqq, Xwq, Xww, Xδδ produce the added drag due to nonzero w, q, δ.
The control objectives here are:

depth control : minimize z2, deviation from desired ,

added drag : minimize −Fd ,

where
−Fd = −Xqqq

2 − (Xwq −m)wq −Xwww2 −Xδδδ
2 .

The weighting index is then

J =
∫

(q44z
2 − Fd) dt ,

or
J =

∫
(−Xqqq

2 − (Xwq −m)wq −Xwww2 −Xδδδ
2) dt .

Therefore, we can use

Q =


0 0 0 0
0 −Xww −1

2
(Xwq −m) 0

0 −1
2
(Xwq −m) −Xqq 0

0 0 0 q44

 ,

and
R =

[
−Xδδ

]
,

where q44 is the weighting factor between minimizing depth deviations and minimizing drag.
Relatively large values of q44 will penalize depth deviations heavily and will result in tight
control with increased plane activity (this may be required in operations at periscope depth,
for example). On the other hand, if q44 is chosen small, the resulting control law will
penalize control activity more resulting in minimizing drag and fuel efficiency, with larger
depth deviations from nominal.

6.7 Time Optimal Control of a Double Integral Plant

Consider the dynamical system,
Mẍ = F .

If we define,

x1 = x , x2 = ẋ , u =
F

M
,

we can write it in state space form as,

ẋ1 = x2 ,

ẋ2 = u .

We also assume the control constraints

|u| ≤ 1 ,
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and the initial conditions,

x1(0) = x10 , x2(0) = x20 , x1(T ) = x2(T ) = 0 .

We want to minimize the time to fly,

min J =
∫ T

0
dt .

The Hamiltonian is

H(x, p, u, t) = pT f(x, u, t)− L(x, u, t) = p1x2 + p2u− 1 .

The necessary conditions for optimality are

ẋ1 =
∂H

∂p1
= x2 ,

ẋ2 =
∂H

∂p2

= u ,

ṗ1 = −∂H

∂x1
= 0 ,

ṗ2 = −∂H

∂x2
= −p1 .

Pontryagin’s maximum principle states that u must maximize H = p1x2+p2u−1. Therefore,
the optimal control needs to maximize p2u (since the rest of H does not depend on u). We
can see that if p2 is positive, u must get the maximum positive value (in this case +1), while
if p2 is negative, u must be −1. Therefore, the optimal control is given by

u = sgn[p2(t)] = +1 if p2 > 0 and −1 if p2 < 0 .

The optimal trajectory is given by the solution to,

ẋ− 1 = x2 ,

ẋ2 = sgn(p2) ,

ṗ1 = 0 ,

ṗ2 = −p1 ,

x1(0) = x10, x2(0) = x20, x1(T ) = 0, x2(T ) = 0 .

This is a reduced system of equations, since u is eliminated by maximizing H .

To solve this system we observe that since ṗ1 = 0 we have that p1 = const. and this means
that p2 is a first–order polynomial in t. Therefore, it can only go from positive to negative
at most once in its life, which means that there are only four possible control sequences,

{+1} , {−1} , {+1,−1} , {−1, +1} .
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Figure 30: Time optimal control of a double integrator plant
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Figure 31: Time optimal control of a double integrator plant: Feedback implementation

If we let U = ±1 be the control, we have

x1 = x10 + x20t +
1

2
Ut2 ,

x2 = x20 + Ut .

If we eliminate t we can get

x1 −
(
x10 − 1

2
Ux2

20

)
=

1

2
Ux2

2 ,

which represents a family of parabolas as shown in Figure 30. If u = +1 we are located on
branch A while if u = −1 we are on branch B. The branch that goes through the origin is
called the switching line and it is given by

x1 = −1

2
x2|x2| .

To see how this optimal control works, suppose we start from an initial condition with both
x1 and x2 positive. We apply control u = −1 until we hit the switching line, there we switch
to u = +1 and we land at the origin with zero velocity.

A feedback control implementation is shown in Figure 31. We define

z = x1 +
1

2
x2|x2| ,

which means that the switching line is z = 0. Therefore, we get the optimal control through
a switch u = −1 when z > 0 and u = +1 when z < 0. We should point out that in this
case the final portion of the state trajectory follows the switching curve, this is not typical
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for all systems though. Since the optimal control switches from positive to negative we call
it bang–bang control. Most minimum time control problems lead to bang–bang controllers.
Pontryagin has shown that for a system of order n with negative real poles and scalar u,
|u| ≤ 1, the optimal control switches at most n− 1 times.
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7 DISCRETE AND STOCHASTIC SYSTEMS

7.1 Discrete Systems

Recall our basic continuous system in state space form,

ẋ = Ax + Bu ,

y = Cx .

A control system that is to be implemented using a digital computer, as is usually the case,
is in a discrete state space form,

xn+1 = Adxn + Bdun ,

yn = Cdxn .

The first thing we have to do is to be able to go from the continuous to the discrete model.
We start with the solution to the state equations in the form

x(t) = eA(t−t0)x(t0) +
∫ t

t0
eA(t−τ)Bu(τ) dτ .

We can use this solution over one sample period T to obtain a difference equation. Let

t = nT + T ,

t0 = nT ,

and we get

x(nT + T ) = eAT x(nT ) +
∫ nT+T

nT
eA(nT+T−τ)Bu(τ) dτ .

Now assume that the input does not change within one sample period,

u(τ) = u(nT ) for nT ≤ τ < nT + T .

We refer to this operation as the zero–order hold with no delay. Then, by defining the
auxiliary variable

η = nT + T − τ ,

we get

x(nT + T ) = eAT x(nT ) +
∫ T

0
eAηBu(nT ) dη .

Therefore, the system

ẋ = Ax + Bu ,

y = Cx ,

becomes

xn+1 = Adxn + Bdun ,

yn = Cdxn ,
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Figure 32: Stable poles for continuous and discrete systems

where

Ad = eAT ,

Bd =
∫ T

0
eAηB dη ,

Cd = C ,

and T is the sample period. The MATLAB command c2d automates the above conversion
from continuous to discrete form.

A low sample period T ; i.e., high sample rate, is in general desirable for good performance
so that we can approximate the continuous model as closely as possible. This, however, will
demand a fast computer and A/D and D/A converters. It should be emphasized here that
low T is always with respect to the response time of the physical system. Low T for one
system may be high for a different system. Low sample rate, high T , may lead to instabilities
when the design is based on the continuous system. In such a case we should switch to a
direct discrete design. This means that the continuous system is discretized first, and any
compensator design is based on the discrete version. Fortunately this parallels the continuous
design we have already developed.

We can place the poles of a discrete system to desirable locations by linear state variable
feedback,

un = −Kxn ,

and if not all states are measurable we can use a discrete full–order estimator,

x̂n+1 = Adx̂n + Bdun + L(yn − Cdx̂n) .

We can find the gain matrices K and L by poleplacement of

Ad − BdK ,

and
Ad − LCd .
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We already know how to do the poleplacement design, the only thing we need to know is:
When is a discrete system xn+1 = Axn stable? We can see this by considering a scalar
system. Consider the continuous system

ẋ = ax .

The solution is x(t) = eatx(0) so if �{a} < 0 the system will be stable. The discrete system

xn+1 = axn ,

has

x1 = ax0 ,

x2 = ax1 = a2x0 ,

x3 = ax2 = a3x0 ,

and, finally,
xn = anx0 .

For stability, we want xn → 0 as n→∞, or an → 0, which means that we want

|a| < 1 .

Therefore, the discrete time system xn+1 = Axn is stable if and only if all eigenvalues of A
have absolute value less that one; i.e., they are located inside the unit circle in the s–plane,
see Figure 32. Since the continuous matrix A becomes eAT when discretized, we can argue
that an eigenvalue which is equal to λ for a continuous system, corresponds to an eigenvalue
equal to eλT for a discrete system with sample period T . By keeping this analogy in mind we
can do in discrete time everything we did in continuous time. The corresponding MATLAB
commands have the same names with simply the prefix d in front, for example dlqr will do
the discrete LQR design.

As an example, consider the system

ẋ = x + u ,

which is open–loop unstable. A control law of the form u = −2x places the closed loop pole
of the continuous system at −1, this means that the continuous system has a time constant 1
second. Now let’s discretize the system using a sample period T , we set the closed loop pole
of the discrete system at e−T . How different will be the discrete gain from the continuous
gain 2? This should depend strictly on T . If T is very small compared to 1, the time constant
of the system, then the two gains must be relatively close. Ten times smaller should be small
enough. On the other hand, if T is of the same order of magnitude as 1, we have to compute
the gain from the discrete design. This is illustrated by the results of Figure 33 where we
present the discrete time gain for a discrete closed loop pole at e−T , versus T for T from 0.01
sec to 1 sec. This corresponds to sample rates from 100 Hz to 1 Hz, respectively.
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Figure 33: Discrete system example
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7.2 Stochastic Processes

To this point we have treated the entire control/estimation problem as deterministic; every-
thing had a known value at each time. In real world problems, however, there are quantities
which we can only describe probabilistically, for example sensor characteristics or sea waves.
There are unpredictable disturbances and measurement noise which occur during operation
of real systems. These disturbances and noise can be modeled as stochastic processes. A
very useful special class of stochastic processes is the Gauss–Markov process which can be
completely described by the following:

1. Its mean value vector x,
x︸︷︷︸

(n×1)

≡ E [x(t)] ,

which gives the expected value or ensemble average of all possible observations at time
t; this is the most likely value.

2. Its correlation matrix C,

C(t, τ)︸ ︷︷ ︸
(n×n)

≡ E
{
[x(t)− x(t)] [x(τ)− x(τ)]T

}
,

which is a symmetric matrix and gives the relationship between the deviation from the
mean at time t to the deviation from the mean at a different time τ .

When t = τ , this correlation matrix becomes the covariance matrix which measures the
mean square deviation of the state vector from the mean; i.e.,

X(t)︸ ︷︷ ︸
(n×n)

≡ C(t, t) = E
{
[x(t)− x(t)] [x(t)− x(t)]T

}
.

At any time t, the state x(t) is normally distributed (Gaussian distribution) about the mean
and the diagonal elements of X(t) give the variance (standard deviation squared) for the
associated elements of x.

A special Gauss–Markov process is the purely random process. This is an idelized, very
jittery process which is completely uncorrelated from one time to the next. This is a useful
model for disturbances or noise which change very rapidly compared with the time response
of a system. The correlation matrix for a purely random process is

C(t, τ) = Q(t)︸ ︷︷ ︸
(n×n)

δ(t− τ) ,

where Q(t) is the power spectral density, and δ(t− τ) is the Dirac delta function; this is zero
everywhere except at t = τ where it assumes a “value” such that

∫+∞
−∞ δ(t− τ)dτ = 1. This

can be viewed as the limit of a sequence of impulses of random magnitude (equal plus and
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minus so the mean is zero; average square magnitude is σ2(t)) and random time of occurence.
For such a sequence,

Q(t) ≈ 2 [σ(t)]2 β(t) ,

where β(t) is the average number of occurences per unit time.

The key behind using Gauss–Markov processes is that a Gauss–Markov process can al-
ways be represented by a state vector of a linear dynamical system forced by a Gaussian
purely random process where the initial state vector is Gaussian. Thus,

ẋ = Ax + Γw ,

where

E[w(t)] = w = 0 ,

E
[
w(t)wT

]
= Q(t)δ(t− τ) ,

E [x(t0)] = x0 ,

E
{
[x(t0)− x0] [x(t0)− x0]

T
}

= X0 ,

E
{
[w(t)− w] [x(t0)− x0]

T
}

= 0 .

The forcing disturbance w and the initial state x(t0) are completely independent or uncor-
related. Recall the state property for deterministic systems: knowing the current state and
the state equation completely defines the future for zero control. The Markov property is
completely parallel to this: knowing the current state mean x0 and covariance matrix X0

completely defines the future mean and covariance for zero control when subjected to the
disturbance described by w = 0 and Q. The Gaussian property states that the state will
always be normally distributed about the mean value in accordance with the variance (stan-
dard deviation squared) given by the diagonal elements of the covariance matrix. Thus for
one state x, it will be within one standard deviation σ of x 68.3% of the time; within 2σ of
x 95.5% of the time; within 3σ of x 99.7% of the time. For multiple states these percentages
decrease as shown in the following table:

n σ 2σ 3σ
1 68.3 95.5 99.7
2 39.4 86.5 98.9
3 20.0 73.9 97.1

The mean value vector of a Gauss–Markov process obeys the state differential equation

ẋ = Ax + Γw , x(t0) = x0 .

The covariance matrix obeys equation

Ẋ = AX + XAT + ΓQΓT , X(t0) = X0 ,

which is completely independent and which could be calculated in advance. Note that the
term AX + XAT represents the effect of the system dynamics and it may decrease X for
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Figure 34: Response of first order system to noise

Figure 35: “Snapshots” of Figure 34 at different times
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a stable system, while the other term ΓQΓT represents the effect of the disturbance and it
always increases X since we have a positive definite Q.

We can visualize this by considering a simple first order system so that all the above
matrices are scalars. A stable first order system with an initial mean x0 and small standard
deviation σ0 could be released while subjected to noise. It could respond as shown in Figure
34 for large noise. As an example suppose we have the system

ẋ + 2x = w ,

where w is zero mean, purely random (white noise), x is exactly 1 at t = 0. At this time, x
is released and the disturbance w with power spectral density Q = q = 3 begins to act on
the system. We want to determine the mean and the covariance of the response. The mean
will follow the state equation

ẋ = Ax + Γw = −2x , x(0) = 1 , A = −2 ,

and w = 0 since w is white noise. The solution for the mean is

x(t) = e−2t .

The covariance will follow equation

Ẋ = AX + XAT + ΓQΓT , Q = q = 3 , Γ = 1 ,

or
Ẋ = −2X − 2X + q ,

and, with exact knowledge at t = 0, the initial condition is X(0) = 0. The solution is

X(t) = 0.75
(
1− e−4t

)
= σ2 ,

the variance of x(t) about its mean x(t), refer to Figure 35.

normally distributed
t x X σ
0 1 0 0

0.5 0.368 0.648 0.805
∞ 0 0.750 0.866

Most physical disturbances can be modeled by one of the following special cases:

1. White noise: A stationary, purely random Gauss–Markov process with zero correlation
time (see below) and constant power spectral density,

C = Qδ(t− τ) .

2. Random bias: A random, unpredictable constant with infinite correlation time and
constant correlation. In this case we introduce

ẋn+1 = 0 , xn+1(t0) = random .
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Figure 36: White noise and random bias

Figure 37: Exponentially correlated noise

We add a new, constant state to the system of equations; i.e., we augment the state equations
and estimate xn+1 along with the rest of the states xi, i = 1, . . . , n, as we have already
seen before. As examples, a disturbance which changes rapidly compared to the dominant
dynamics of the system can be modeled as white noise; e.g. wave effects on the steering of a
large tanker. A disturbance which changes very slowly compared to the dominant dynamics
of the system can be modeled as a random bias; e.g. tidal current on ship steering.

3. Exponentially correlated noise: Between the two extremes where white noise and
random bias models are appropriate, are disturbances which change on the same time scale
as the dominant dynamics of the system. These disturbances have finite, non–zero correlation
times τc. The simplest can be modeled as a first order system driven by white noise; i.e.,

τcẋn+1 + xn+1 = w .

In these cases the state vector can be augmented with xn+1. Disturbances which change with
about the same dynamics as the system must be modeled with a finite τc; e.g. the force and
moment produced by a passing ship during underway replenishment. The above equation
is called a shaping filter because it “shapes” white noise w to produce another disturbance
xn+1 which is called “colored” noise. The correlation time is the same as the time constant
of the disturbance variation, this can be obtained by considering the physics of the problem.
For example, if the disturbance is the force produced by a passing ship we can take τc to be
approximately the time it takes to travel a ship length.
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To complete the model for the exponentially correlated disturbance it is necessary to
specify the power spectral density of the white noise w. This is given by,

q = 2σ2τc ,

where

σ = root mean sqaue (RMS) noise level,

τc = correlation time.

The same formula is also used in design to establish the power spectral density of disturbances
modeled as white noise. In that case the correlation times (modeled as zero) are actually
small nonzero quantities compared to the time constants of the system. In practice this can
be the integration time step in simulations, or the sample time in experiments.

More complex models for modeling disturbances are also possible, this is a trade–off
between accuracy and simplicity. Of great interest to naval engineering is the modeling of
the disturbance due to waves. The simplest approach would be to model this as white noise,
this is very accurate for large ships. For smaller vessels it might be worth modeling the
periodic nature of the disturbance. There are a couple of ways to do this. If we assume a
sinusoidal wave as the dominant model for waves in the area, we can use a second order
model driven by white noise w,

ÿ + ω2y = w ,

where ω is the assumed frequency of the dominant wave (usual periods of sea waves are in
the 6 to 15 sec range), and y is the amplitude of the disturbance. In state space form then
we need to augment our system with two additional equations

ẋn+1 = xn+2 ,

ẋn+2 = −ω2xn+1 + w ,

where y = xn+1 and ẏ = xn+2. More accurate descriptions of the seaway are also used. A
typical description follows the so–called Pierson–Moskowitz wave spectrum given by

S(ω) =
a

ω5
e−b/ω4

,

where a, b are constants describing the particular seaway. Such a spectrum can be simulated
by feeding a white noise signal into a suitable shaping filter. As an example, for a significant
wave height (the average of the highest one third of all wave heights) of 7 m and a mean
wave period of 9.4 seconds we have a = 0.78 and b = 0.063. Then the rational spectrum

SR(ω) =
b2
2ω

2

ω6 + (a2
1 − 2a2)ω4 + (a2

2 − 2a1a3)ω2 + a2
3

,

with a1 = 0.5, a2 = 0.33, a3 = 0.07, and b2 = 0.415 can be used as an approximation of S(ω)
for the chosen sea state. When both S and SR are plotted versus ω the agreement is good.
For details see the article “Control of yaw and roll by a rudder/fin stabilization system”
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by Kallstrom in the Proceedings of the Sixth Ship Control Systems Symposium, 1981. A
stochastic process with spectral density given by SR can be obtained as output from the
filter

G(s) =
b2s

s3 + a1s2 + a2s + a3

,

with white noise as input. A similar model can be built for approximating the wave slope
spectrum,

Ss(ω) =
ω4

g2
S(ω) ,

and either one or both wave height and wave slope models can then be used for realistic
design and simulations.

7.3 Kalman Filter

We present now the maximum likelihood, stochastic observer or filter for a nonstationary
Gauss–Markov process. This will be seen to be completely parallel to the deterministic
observer discussed in Section 3. We will sketch the derivation of the continuous time Kalman
filter using calculus of variations in a manner which parallels our derivation of the optimal
control law in 6.6.

Recall our classical full order observer design

˙̂x = Ax̂ + Bu + L(y − Cx̂) .

In general, we would like to place the observer poles as negative as possible, this will create
large elements of the observer gain matrix L. The larger the L, the faster the error in the
observer dynamics will decay to zero. A very large L, however, will amplify undesirable noise
which is always present in real systems. Therefore, there seems to be a limit on L which
should depend on the level of noise in the system; this in turn should be directly related
to the quality of our sensors and the disturbances. The Kalman filter is this best value for
L and it provides an optimal stochastic observer, just like the linear quadratic regulator
provided an optimal controller.

Consider the system
ẋ = Ax + Bu + Γw ,

where w is a purely random process, and

E[x(t0)] = x0 ,

E
{
[x(t0)− x0][x(t0)− x0]

T
}

= P0 ,

which is the covariance of the error in the estimate of the state x̂(t0) at t0. Initially we
assume that x̂(t0) = x0: the most likely estimate at t0 is the mean value at that time. In
general,

P (t) = E
{
[x̂(t)− x(t)][x̂(t)− x(t)]T

}
= E

[
x̃(t)x̃T (t)

]
,
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where x̃ ≡ x̂ − x is the error in the estimate of the state. The disturbance w in the state
equations is a purely random process with

E[w(t)] = 0 , zero mean,

E[w(t)wT (t)] = Q(t)δ(t− τ) ,

where Q is the power spectral density matrix. We want to estimate the state vector x̂(t)
using a set of noisy measurements,

y = Cx + v ,

where the measurement noise v is another purely random process with

E[v(t)] = 0 , zero mean,

E[v(t)vT (t)] = R(t)δ(t− τ) .

What we want to do is to generate an estimate of both x and w which enter the state
equations. This can be done in a least square sense if we minimize the cost function

J = 1
2

[
(x0 − x0)

T P−1
0 (x0 − x0)

]
+ 1

2

∫ tf

t0

[
wTQ−1w + (y − Cx)T R−1(y − Cx)

]
dt .

Observe that the first term minimizes the error in the initial estimate; the second term
minimizes the error in the estimate of w; and the third term minimizes the error in the
estimate of x. The minimization is subject to the constraints

ẋ = Ax + Bu + Γw ,

y = Cx + v .

Following a process similar to the LQR design, we can define the Hamiltonian

H = 1
2

[
wTQ−1w + (y − Cx)T R−1(y − Cx)

]
+ λT (Ax + Bu + Γw) ,

and formulate the Euler–Lagrange equations, as before. We can find then that the optimal
observer has the familiar form,

˙̂x = Ax̂ + Bu + L(y − Cx̂) , x̂(t0) = x0 ,

where L is the Kalman filter gain matrix

L = PCTR−1 ,

and P is the solution of the forward matrix Riccati differential equation

Ṗ = AP + PAT + ΓQΓT − PCTR−1CP ,

P (t0) = P0 .

In the steady state case, these results become

L = PCTR−1 ,
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where now P is the solution to the algebraic Riccati equation

AP + PAT + ΓQΓT − PCT R−1CP = 0 .

The positive definite solution defines P , the covariance of the error in the estimate of the
state x̂.

As an example, consider the system

ẋ = −2x + w , so A = −2, Γ = 1,

y = x + v , so C = 1.

The disturbance w is exponentially correlated with a correlation time

τw = 0.01 ,

and root mean square value
σw = 1.2 .

The measurement noise v is also exponentially correlated with correlation time

τv = 0.01 ,

but with an RMS value
σv = 0.2 .

We want to design a Kalman filter to produce a best estimate of x from y. The system has
the time constant

T = 0.5 0.01 ,

so we can model both the disturbance and noise as white noise compared with the dynamics
of the system. The power spectral densities are estimated as

for w : Q ≈ 2σ2
wτw = 2(1.2)20.01 = 0.0288 ,

for v : R ≈ 2σ2
vτv = 2(0.2)620.01 = 0.0008 .

Our filter is given by
˙̂x = −2x̂ + L(y − x̂) , L = PR−1 .

To find P we use the algebraic Riccati equation

−2P + P (−2) + 0.0288− P
1

0.0008
P = 0⇒

P 2 + 0.0032P − 0.00002304 = 0⇒
P = 0.00346 ,

the positive root. Then

L = PR−1 =
0.00346

0.0008
= 4.3246 ,
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giving
˙̂x = −2x̂ + 4.3246(y − x̂) = −6.3246x̂ + 4.3246y .

The error in the estimate produced by the filter is

˙̃x = ˙̂x− ẋ

= Ax̂ + Bu + L(Cx + v − Cx̂)− Ax−Bu− Γw

= (A− LC)x̃ + Lv − Γw

= (−2− 4.3246)x̃ + 4.3246v − w

= −6.3246x̃ + 4.3246v − w .

The eigenvalue of the filter is at −6.3246 which is well to the left of the system eigenvalue,
−2, so the estimate will converge fast compared to the system.

7.4 The LQG Compensator

Recall that the separation principle allowed us to design the controller and the estimator
separately and then use x̂ instead of x in the control law. The same principle states here
that the optimal way to control a system

ẋ = Ax + Bu + Γw ,

is to use a Kalman stochastic observer to estimate the state from the noisy measurements

y = Cx + v ,

and then use this estimate x̂ with the optimal deterministic linear controller we have already
developed. The optimal controller can be derived from the LQR design, or we can use any
kind of state feedback and feedforward we desire. The key is that we have no control over the
poles of the observer here, nor can we choose the Q and R matrices that enter the Kalman
filter design. These are set by the quality of our sensors and the level of the disturbances.
After computing L from the Riccati equation, we should find the observer poles from the
eigenvalues of (A−LC) and make sure that they are more negative (the dominant pole) than
the dominant poles of the controller. This can be done directly if we use poleplacement or
indirectly by changing the weighting matrices in the LQR design. In case that the controller
poles are not satisfactory, it is time to get better sensors!

The above combination of the optimal controller (LQR) and the optimal stochastic ob-
server (Kalman filter) is called the Linear Quadratic Gaussian (LQG) compensator. This
theoretical result produces a control system which is completely parallel to the deterministic
observer and controller derived previously, except that now the controller and observer gain
matrices are theoretically derived to yield optimal performance in the presence of stochastic
disturbances w and measurement noise v.

Summarizing the total design problem, we have:
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• State x,
ẋ = Ax + Bu + Γw , x(t0) = x0 ,

with

E[wwT ] = Qδ(t− τ) , white noise ,

E[w] = 0 ,

covariance X =
[
(x− x)(x− x)T

]
.

• Estimate x̂,
˙̂x = Ax̂ + Bu + L(y − Cx̂) , x̂(t0) = x0 ,

with covariance
X̂ =

[
(x̂− x)(x̂− x)T

]
.

• Error in estimate x̃,
x̃ = x̂− x ,

with covariance
P =

[
(x̂− x)(x̂− x)T

]
= E

[
x̃x̃T

]
.

• Measurements y,
y = Cx + v ,

with

E
[
vvT

]
= Rδ(t− τ) , white noise ,

E[v] = 0 .

• Controller,
u = −Kx̂ ,

• Controller gain K,
K = R−1BT S ,

where
AT S + SA− SBR−1BT S + Q = 0 ,

• Estimator gain L,
L = PCT R−1 ,

where
AP + PAT + ΓQΓT − PCT R−1CP = 0 .

It should of course be emphasized that the matrices Q and R that enter the controller design
are completely different than those in the observer design. The block diagram of the LQG
design is shown in Figure 38.
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Figure 38: Compensator block diagram
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7.5 Linear Quadratic Gaussian Compensator block diagram

With the optimal design developed above the performance can be evaluated either prob-
abilistically or deterministically using computer simulation. Here we will develop the root
mean square (RMS) response which can be easily computed for linear systems and can serve
as a comparison index for different designs. If we wish to establish the response of the state
about zero (the states are defined as deviations from nominal), we can begin with the filter
response. Using the previous equations,

˙̂x = (A− BK)x̂ + L[C(x− x̂) + v] ,
˙̂x = (A− BK)x̂− LCx̃ + Lv , x̂(t0) = x0 = 0 .

The dynamics in the error are governed by,

˙̃x = ˙̂x− ẋ

= Ax̂ + Bu + L(Cx + v − Cx̂)− Ax−Bu− Γw

= (A− LC)x̃ + Lv − Γw ,

with
x̃(t0) = x0 − x(t0) = −x(t0) .

From the ˙̂x and ˙̃x equations we can see that x̃ is statistically independent of x̂, so

E
[
x̃(t0)x̂

T (t0)
]

= 0 ,

and
E
[
x̃(t)x̂T (t)

]
= 0 .

We can, therefore, establish the covariance of the state to be given by

X = E
[
x(t)xT (t)

]
= E

[
(x̂− x̃)(x̂− x̃)T

]
= E

[
x̂x̂T

]
−E

[
x̂x̃T

]
− E

[
x̃x̂T

]
− E

[
x̃x̃T

]
= E

[
x̂x̂T

]
−E

[
x̃x̃T

]
.

This gives
X(t) = X̂(t) + P (t) ,

or, at steady state,
X = X̂ + P ,

which says that

(covariance of state) = (covariance of estimate of state)

+(covariance of error in estimate of state) .

We already know how to obtain P and thus we need X̂ to obtain X, and the RMS response of
the state x which is given by the square root of the diagonal terms in X. If we use the above
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equation in the definition of the covariance X̂ we can finally obtain the following differential
equation for X̂,

˙̂
X = (A−BK)X̂ + X̂(A− BK)T + PCT R−1CP = 0 , X̂(t0) = 0 ,

which in the steady state yields the linear matrix equation,

(A−BK)X̂ + X̂(A−BK)T + PCTR−1CP = 0 ,

which can be solved for X̂ and then used in X = X̂ + P to obtain X.

The root mean square (RMS) use of the controls u can be derived directly from the
definition of its covariance,

U ≡ E
[
uuT

]
= E

[
(−Kx̂)(−Kx̂)T

]
= KE

[
x̂x̂T

]
KT = KX̂KT .

The square root of the associated diagonal elements of X and U give the RMS value of the
states and controls, respectively, when the system is subjected to the disturbances w de-
scribed by Q and the measurement noise described by R. The above equations are estimates
of the RMS value of the response of a system and can be used for comparing different con-
trol and estimator designs. It should be borne in mind that they are not valid for nonlinear
systems; they can not be used when the control effort saturates, for example. In these cases
the associated RMS values of the variables of interest should be computed numerically by
simulation.
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8 NONLINEAR SYSTEMS

We introduce here a few concepts and analysis techniques for nonlinear systems. The analy-
sis and control of linear systems is a necessary step in understanding nonlinear dynamics.
Although, as we have seen, almost every nonlinear system can be locally approximated by
a linearized system, this corellation should not be pushed too far. For nonlinear systems
the principle of superposition of solutions does not hold. There are no separate natural and
forced motions. Twice the input does not mean twice the output. For nonlinear systems
there may be a significant dependence of the response on the magnitude and type of the
excitation. For example, a nonlinear system may have completely different behavior under
step inputs of different magnitude, or sinusoidal inputs of different frequencies. The response
may also depend drastically on the initial conditions. In fact for some systems it may happen
that the long term behavior of the solutions may be effectively random, even though both
the system and the input are purely deterministic, as a result of extreme sensitivity to initial
conditions. Since one can never be exactly certain about the initial state, the final state of
such a system may very well be unpredictable. Such essentially unpredictable deterministic
systems are known as chaotic systems.

8.1 Introduction

As a first example of what may happen when nonlinearities are present in a physical system,
consider the so called Duffing’s equation. This is nothing but a spring–mass–damper system
with nonlinear spring force characteristics,

mẍ + bẋ + kx + αx3 = 0 .

The spring force is kx + αx3 instead of kx that would be if the spring were linear. We call
the case of α > 0 a hardening spring, and α < 0 a softening spring. A typical example would
be the familiar GZ(φ) curve: it has the characteristics of a hardening spring for small φ for
a surface ship, and a softening spring for a submarine. The plot of spring force vs. spring
displacement would typically appear as shown in Figure 39.

We know that the natural frequency of oscilation of the linear spring system is ωn =√
k/m, in other words it depends only on k and not on the amplitude of oscillation. For a

hardening spring, it can be seen that the equivalent linearized spring constant is k + 3αx2,
which means that it increases with the displacement x. Therefore, we expect the natural
frequency of the hardening spring system to increase with the amplitude of oscillation, as
well. The opposite is true for the softening spring case, α < 0, see Figure 40.

Now consider Duffing’s equation with forcing,

mẍ + bẋ + kx + αx3 = P cos ωt .

We know that the frequency response curve has the familiar shape of Figure 41. It starts
from 1, it may reach a maximum at about ωn depending on the amount of damping, and
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Figure 39: Linear and nonlinear spring force/displacement characteristics

Figure 40: Natural frequency of linear and nonlinear springs

126



Figure 41: Frequency response curve for a linear spring

Figure 42: Frequency response curves for nonlinear springs

then it approaches zero. We can observe that the frequency response curve “wraps around”
the amplitude vs. frequency curve we had before. Therefore, we can guess that the frequency
response curves for the hardening and softening nonlinear springs will take one of the two
forms shown in Figure 42.

We can see that depending on the frequency of excitation and upon increasing or de-
creasing this frequency, the system may experience oscillations with different amplitude, or
sudden changes in the amplitude of the response. These phenomena are characteristic of
nonlinear restoring forces and moments, and are called jump phenomena or hysteresis.

A different type of phenomena of nonlinear systems may occur when the system is excited
with input of frequency ω. A linear system would respond only with the same frequency, but
a nonlinear system may experience responses, besides ω, at frequencies ω/n where n is an
integer. These are called subharmonic oscillations. Superharmonic oscillations at frequencies
n · ω are also possible although they are not as severe as the subharmonics. This is because
higher frequencies are usually associated with more damping. The generation of the above
oscillations depends upon the initial conditions, as well as the amplitude and frequency of
the excitation.

One question that one may ask is, how many types are behavior are possible for nonlinear
systems? The answer to this depends mainly on the system dimensionality. Suppose we have
a first order, scalar, system. This involves one variable only, and this can be represented on
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a straight line. Since it is restricted to move on this line, the system can only experience
one or more equilibrium points, and these can be either stable or unstable. Now consider a
second order system, this involves two variables x1, x2, and if we want to plot these together
we need to use a two–dimensional graph, a plane. The solutions in time on this plane can
do whatever they desire except cross each other: this would violate uniqueness of solutions
for all subsequent times, since different response would be obtained from identical starting
conditions. Solutions of dynamic systems, linear or nonlinear, exist and are unique. We can
see that two types of behavior are possible here: the solutions can either approach a point
asymptotically (equilibrium point), or a closed curve on which they may be constrained to
move for ever. This represents a periodic solution. Such an isolated periodic solution is
called a limit cycle and occurs without any periodic excitation! The study of limit cycles
is a very tough but nice problem in nonlinear systems. Now let’s imagine a system with
three or more state variables. We need at least a three–dimensional graph to plot all of our
solutions together here. It is clear that such a system may exhibit both equilibrium points
and isolated periodic solutions or limit cycles. In three or more dimensions, the restriction
that trajectories may not cross does not constrain the solutions to be simple. There is enough
room in three dimensional spaces and beyond so that the solutions they can wrap around
each other, twist, turn, and tangle themselves into fantastic knots as they develop in time,
forming complicated patterns. Therefore, some complex dynamic behavior is possible for
third or higher order systems. Forced and/or discrete systems are usually more complicated.
To summarize we can have the following possible types of behavior for nonlinear systems:

• First order unforced systems: Equilibrium points only.

• Second order unforced systems: Equilibrium points and limit cycles.

• Third order or higher unforced systems: Equilibrium points, limit cycles, possible
complicated behavior.

• Second order or higher forced systems: Equilibrium points, periodic solutions, possible
complicated behavior.

• Discrete systems of any order: Equilibrium points, periodic solutions, possible compli-
cated behavior.

Let’s consider as an example, a Van der Pol equation; a spring–mass–damper system with
nonlinear damping and no forcing,

mẍ− b(1− x2)ẋ + kx = 0 .

The equilibrium point of this equation is x = 0, the origin. By linearization we can easily
see that the origin is unstable. The linearized system is mẍ− bẋ + kx = 0, and we see that
x = 0 is unstable because of the negative damping term −b. So where are the solutions
going? We have seen that for small x the solutions move away from x = 0. For large x we
can see that the term −b(1− x2) will become positive, so the damping will be positive and
the solutions will have to move towards x = 0. Therefore, solutions which originate from
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Figure 43: Poincaré’s limit cycle prediction technique

Figure 44: Frequency entrainment

large x will move towards the origin. Since they cannot cross each other and there are no
other equilibrium points to attract them, they have to approach a limit cycle which should
be located somewhere around the origin. This argument, which is known as the Poincaré–
Bendixon theorem, holds for second order systems only and it will reveal the existence of a
limit cycle but it cannot provide any information about its size or frequency. The sketch of
Figure 43 illustrates Poincaré’s argument.

Another phenomenon typical in nonlinear systems is the frequency entrainment. Suppose
we have a system which is capable of exhibiting a limit cycle of frequency ω0. If a periodic
force of frequency ω is applied to this system we have the phenomenon of beats. As the
difference between the two frequencies decreases, the beat frequency also decreases and, for
a linear system, it is zero only if ω = ω0. In a self excited nonlinear system, however,
it is found that the frequency ω0 of the limit cycle falls in synchronization with, in other
words it is entrained by, the forcing frequency ω within a certain band of frequencies. This
phenomenon is illustrated in Figure 44.
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8.2 A Simple Zero Eigenvalue

Suppose we have the nonlinear system of state equations,

ẋ = f(x) .

We know that the equilibrium points, x, of the system are defined by

f(x) = 0 .

This is a nonlinear system of algebraic equations and it may have multiple solutions in x,
which means that the nonlinear system may have more that one positions of static equilib-
rium. If we pick one equilibrium, x, we can establish its stability properties by linearization.
The linearized system becomes

ẋ = Ax ,

where A is the Jacobian matrix of f(x) evaluated at x,

A =
∂f

∂x

∣∣∣∣∣
x

,

and the state x has been redefined to designate small deviations from the equilibrium x,

x→ x− x .

As long as all eigenvalues of A have negative real parts, we know that the linear system will
be stable. This means that the equilibrium x will be stable for the nonlinear system as well.
No surprises so far, in fact what we have just said is nothing but Lyapunov’s linearization
technique.

The question we ask ourselves next is, what happens if one real eigenvalue of the linearized
matrix A is zero? The interesting case here is when the rest of the eigenvalues have all
negative real parts, otherwise x is unstable and the problem is solved. If the case of a zero
eigenvalue appears to be too specialized to be of any practical use consider this: Assume that
f(x) depends on one physical parameter (and there will be plenty of physical parameters in
any problem) and that physical parameter is allowed to vary over some range; aren’t they
all? Then it is clear that A will depend on that parameter and as the parameter varies, it is
possible that one real eigenvalue of A will become zero for a specific value of the parameter.
Our problem is then to establish the dynamics of the nonlinear system as one real eigenvalue
of A crosses zero; i.e., goes from negative to positive. As the solutions evolve it time, things
are interesting only along the direction of the eigenvector that corresponds to the critical
eigenvalue (the one that crosses zero). Along the rest of the directions in the state space,
everything should converge back to the equilibrium; remember that we assumed that all
remaining eigenvalues of A have negative real parts. The above statement should be clear
for those of us who haven’t forgotten our ME 2801 or O.D.E. material. Although, strictly
speaking, it is a true statement for linear systems, there are technical reasons that force it to
be true for nonlinear systems as well, the only difference is that the corresponding directions
in the state space are curved instead of straight.
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We can see then that it is possible to approximate our original system by a one–dimensional
system, which is much easier to analyze. The dynamics of the two systems will be qualita-
tively similar. The formalization of the above reduction procedure consitutes what is known
as center manifold reduction, or normal form computation in nonlinear analysis. So let’s see
what happens for the case of a zero eigenvalue by using a (typical) first order system,

ẋ = λx− x3 ,

where x is scalar and λ is our distinguished parameter which is allowed to vary between −1
and +1. The equilibrium points of the system can be found from

λx− x3 = 0 =⇒ x(λ− x2) = 0 ,

and we can see that, depending on the sign of λ the equilibria are

x = 0 ,

if λ < 0, and
x = 0 and x = ±

√
λ ,

if λ > 0. There is only one equilibrium for negative λ, this is x = 0, the trivial equilibrium.
However, as λ crosses zero moving towards positive values a new pair of equilibria appears
out of thin air. These two new equilibria are symmetric (equal plus and minus values), they
are close to the trivial equilibrium initially, but as λ moves away from its critical value, λ = 0,
they move further away from zero. To analyze the stability properties of these equilibria,
let’s pick x = 0 first. The Jacobian is,

∂f

∂x

∣∣∣∣∣
x

= λ− 3x2 .

At x = 0 we get the linearized system

ẋ = λx ,

and we see that x = 0 is stable if λ < 0 and unstable if λ > 0. For x = +
√

λ we get the
linearized system

ẋ =
[
λ− 3

(√
λ
)2
]
x = −2λx .

We can see then that for λ > 0, the equilibrium x = +
√

λ is stable. Remember that for
λ < 0 this equilibrium does not exist. The same is true for the other equilibrium x = −√λ.
Therefore, we can summarize our findings as follows:

• For λ < 0 only the trivial equilibrium exists and is stable.

• For λ > 0 the trivial equilibrium becomes unstable and a pair of symmetric stable
equilibria are generated.
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Figure 45: Pitchfork bifurcations
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This phenomenon, the loss of stability of an equilibrium and the generation of additional
equilibrium states, is called a pitchfork bifurcation and is very common in nature; Euler
buckling of a beam is a very typical example. In particular, we refer to the above case as the
supercritical pitchfork, this is a rather benign loss of stability since upon loss of stability of
the trivial equilibrium the additional nearby equilibrium states are stable. Graphically, we
can represent this case as shown in Figure 45 where solid curves represent stable and dotted
curves unstable equilibria. We have also indicated the direction of solutions in time of our
system for different values of λ. Occasionally, the above case is referred to as a soft loss of
stability since for small values of λ beyond its critical value, the final steady state of the
system does not differ much from the nominal (trivial) steady state.

As a second example, consider a “similar” system as before, the linear part remains the
same, and the nonlinear part x3 suffers a sign change,

ẋ = λx + x3 .

We can analyze this in exactly the same way as before, and we can draw the following
conclusions (verify these),

• For λ > 0 only the trivial equilibrium exists and is unstable.

• For λ < 0 the trivial equilibrium becomes stable and a pair of symmetric unstable
equilibria are generated.

This case, which is also shown in Figure 45, is called a subcritical pitchfork. A comparison
with the previous case reveals that this is a much more serious loss of stability case. Upon
loss of stability of the trivial equilibrium position, there is no other stable equilibrium in
its vicinity to attract the solutions, which may therefore assume a different state of motion
with what could be observed as a discontinuous jump. Furthermore, even before the trivial
equilibrium loses its stability the domain of attraction becomes very small and a random
perturbation can always throw the system to a different state of motion. This new steady
state may be a limit cycle or, depending on the dimensionality of the system, a more com-
plicated response pattern. This loss of stability, sometimes called a hard loss of stability,
demonstrates the significance of nonlinear terms in the equations of motion.

8.3 A Purely Imaginary Pair of Eigenvalues

Assume now that our nonlinear system has one pair of purely imaginary eigenvalues for some
value of the parameter λ. In other words, this means that as λ is varied over some range, one
pair of complex conjugate eigenvalues of the linearized system matrix A crosses the imaginary
axis. It is assumed that the rest of the eigenvalues of A remain negative or have negative
real parts. We wish to investigate what happens to the nonlinear system during this process.
More specifically, in the previous section we saw that the case of one real eigenvalue crossing
zero is associated with the generation or exchange of stability of additional equilibrium points
for the nonlinear system. The purpose of this section is to show that the corresponding case
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of the real part of one complex conjugate pair of eigenvalues crossing zero is associated with
the generation of periodic solutions or limit cycles for the nonlinear system.

Following similar arguments as before, we can convince ourselves that in the case of a
purely imaginary pair of eigenvalues, the only interesting dynamics of ẋ = f(x) will be
concentrated on a two dimensional space spanned by the eigenvectors which correspond to
the critical pair of eigenvalues of A. We start, therefore, with a two dimensional system in
the rather special form,

ẋ1 = λx1 − ωx2 + ax1(x
2
1 + x2

2) ,

ẋ2 = ωx1 + λx2 + ax2(x
2
1 + x2

2) .

The system admits the trivial equilibrium x1 = x2 = 0. The linearized equations around the
trivial equlibrium are [

ẋ1

ẋ2

]
=

[
λ −ω
ω λ

] [
x1

x2

]
,

with eigenvalues λ±iω. Therefore, for λ = 0 the eigenvalues are purely imaginary (we assume
that ω �= 0). As λ crosses zero, the trivial equilibrium becomes unstable. To compute other
potential equilibrium points for our nonlinear system we use

λx1 − ωx2 + ax1(x
2
1 + x2

2) = 0 ,

ωx1 + λx2 + ax2(x
2
1 + x2

2) = 0 .

If we multiply the first equation by x2, the second by x1, and we add them up, we get

ω(x2
1 + x2

2) = 0 .

Therefore, since ω �= 0, the only equilibrium solution is the trivial equilibrium x1 = x2 = 0.
To proceed with the analysis we introduce polar coordinates, (r, θ), by using the transfor-
mation,

x1 = r cos θ ,

x2 = r sin θ .

The equations of motion are then written as

ẋ1 = ṙ cos θ − rθ̇ sin θ = λr cos θ − ωr sin θ + ar3 cos θ ,

ẋ2 = ṙ sin θ + rθ̇ cos θ = ωr cos θ + λr sin θ + ar3 sin θ ,

which reduce to

ṙ = λr + ar3 ,

θ̇ = ωr .

It is clear that an equilibrium point, r, of the ṙ equation will correspond to a limit cycle
back in the original coordinates x1 and x2. We can see that the ṙ equation has equilibria
given by

λr + ar3 = 0 .
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Figure 46: Hopf bifurcations

Let us assume that a < 0. Then for λ < 0, the trivial equilibrium is stable. For λ > 0
there is a stable limit cycle of radius proportional to the square root of λ surrounding the
unstable trivial equilibrium. If a > 0, then the limit cycle occurs for λ < 0; it is unstable
and surrounds a stable equilibrium point. The two cases are shown schematically in Figure
46. This resembles our pitchfork bifurcation of the previous section. Therefore, we can
summarize our conclusions about the x1, x2 system as follows:

• If a < 0, then:

– If λ < 0 the trivial equilibrium is stable.

– If λ > 0 the trivial equilibrium is unstable, and a family of stable limit cycles

with amplitude ±
√
−λ/a exists.

• If a > 0, then:

– If λ > 0 the trivial equilibrium is unstable.

– If λ < 0 the trivial equilibrium is stable, and a family of unstable limit cycles

with amplitude ±
√
−λ/a exists.

We can see that the situation is similar to our pitchfork case; here we have the generation
of periodic solutions except of equilibrium points. This bifurcation to periodic solutions
is normally called the Poincaré–Andronov–Hopf bifurcation. Analogously to the pitchfork
case, we distinguish here the two major cases, supercritical and subcritical Hopf bifurcation.
For more complicated systems, the reduction to the above two dimensional form and the
computation of the leading nonlinear coefficient a which dictates limit cycle stability can be
a significant undertaking.

8.4 Popov and Circle Criteria

Quite often, we need to analyze a control loop which contains a nonlinearity. Such a typical
loop is shown in Figure 47. The two methods that we describe here enclose the nonlinearity
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Figure 47: The feedback loop to be analyzed by the Popov or circle method

Figure 48: The linear feedback loop that is the subject of Aizerman’s and Kalman’s conjec-
tures

in a linear envelope. The linear envelope rather than the particular nonlinearity is then
used in the subsequent analysis. This approach leads to sufficient but not necessary stability
conditions. Before proceeding to describe graphical techniques for the analysis of a feedback
loop containing a nonlinearity, it is instructive to consider two celebrated conjectures, by
two of the best minds of control theory.

1. The Aizerman and Kalman conjectures:
Aizerman postulated that the system of Figure 47 will be stable provided that the linear
system of Figure 48 is stable for all values of k in the interval [k1, k2] where k1, k2 are defined
by the relation

k1 ≤ N(e)

e
≤ k2 ,

for all e �= 0. In this notation k1, k2 represent a linear envelope surrounding the nonlinearity,
see Figure 51 where A stands for k1 and B for k2. Aizerman’s conjecture, reasonable as it
might sound, is false as has been shown by counter–examples.

Kalman suggested that the system of Figure 47 will be stable provided that the linear
system of Figure 48 is stable for all k in the interval [k̂1, k̂2] where

k̂1 ≤ dN(e)

de
≤ k̂2 ,

and where

k1 ≤ N(e)

e
≤ k2 ,

and
k̂1 ≤ k1 ≤ k2 ≤ k̂2 .

Kalman’s conjecture imposes additional requirements on the nonlinear characteristics but
nevertheless it is also false — again shown by counter–examples. The failure of the two
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Figure 49: Popov’s stability test: The control loop is guaranteed stable

conjectures shows that intuitive reasoning cannot be relied on in nonlinear systems. One
reason for the failure of the conjectures is that instabilities may arise in nonlinear systems
due to the effects of harmonics. These are, of course, absent in linear systems. In the
following, we discuss briefly two techniques for dealing with the problem of Figure 47. These
two techniques, Popov’s and circle criteria, can be viewed as extensions to Nyquist’s stability
criterion for linear systems.

2. Popov’s stability criterion:
Popov developed a graphical Nyquist–like criterion to examine the stability of the loop shown
in Figure 47. It is assumed that G(s) is a stable transfer function. The nonlinearity N(e)
must be time–invariant and piecewise continuous function of e. The derivative dN(e)/de
must be bounded and N(e) must satisfy the condition

0 <
N(e)

e
< k ,

for some positive constant k. Graphically, the last condition means that the curve rep-
resenting N must lie within a particular linear envelope. A sufficient condition for global
asymptotic stability of the feedback loop may then be stated as:

If there exists any real number q and an arbitrarily small number δ > 0 such that

�{(1 + jωq)G(jω)}+
1

k
≥ δ > 0 ,

for all ω then for any initial state the system output tends to zero as t→∞.

The proof can be found in most textbooks on nonlinear control and it makes use of Lya-
punov’s direct method.
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Figure 50: Popov’s stability test: No line through the −1/k point avoids intersection with
the G∗(jω) locus and the loop may be unstable

Figure 51: The linear envelope for the circle method
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Figure 52: The circle criterion

To carry out a graphical test based on the above equation, a modified transfer function
G∗(jω) is defined by

G∗(jω) = �{G(jω)}+ jω�{G(jω)} ≡ X(jω) + jY (jω) .

The criterion then, in terms of X and Y , becomes

X(jω)− qY (jω) +
1

k
≥ δ > 0 .

The G∗(jω) curve (the so called Popov locus) is plotted in the complex plane. The system
is then stable if some straight line, at an arbitrary slope 1/q, and passing through the −1/k
point avoids intersecting the G∗(jω) locus. Figures 49 and 50 show two possible graphical
results for stable and not necessarily stable situations respectively. Recall that the test gives
a sufficient condition for stability and that the feedback loop whose result is given in Figure
50 is not necessarily unstable.

3. The circle method:
The circle method of stability analysis can be considered as a generalization of Popov’s
method. Compared with that method it has two important advantages:

1. It allows G(s) to be open loop unstable;

2. It allows the nonlinearity to be time varying.

The nonlinearity N is assumed to lie within an envelope such that,

Ae < N(e, t) < Be ,

as shown in Figure 51. Then it is a sufficient condition for asymptotic stability that the
Nyquist plot G(jω) lies outside a circle in the complex plane that crosses the real axis at
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the points −1/A and −1/B and has its center at the point,

1

2

[
−
(

1

A
+

1

B

)
+

1

2
jωq

(
1

A
− 1

B

)]
,

for some real value of q. Here it is assumed that A < B.

This is the so called generalized circle criterion. Notice that the center of the circle
depends on both frequency and choice of the value of q. In return for a loss of sharpness
in the result (remembering that the method gives a sufficient criterion), q can be set equal
to zero and then a single frequency invariant circle results (Figure 52). The circle can be
considered as the generalization of the (−1, 0) point in the Nyquist test for linear systems.
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